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Abstract: Enhancement of images with weak edges faces great challenges in imaging applications. In this study, the authors
propose a novel image enhancement approach based on intuitionistic fuzzy sets. The proposed method first divides an image
into sub-object and sub-background areas, and then successively implements new fuzzification, hyperbolisation, and
defuzzification operations on each area. In this way, an enhanced image is obtained, where the visual quality of region of
interest (ROI) is significantly improved. Several types of images are utilised to validate the proposed method with respect to the
enhancement performance. Experimental results demonstrate that the proposed algorithm not only works more stably for
different types of images, but also has better enhancement performance, in comparison to conventional methods. This is a great
merit of such design for discerning specific ROIs.

1 Introduction
In a quite few occasions, optical or medical images have poor
contrast, and are degenerated with different types of noise, or
blurred owing to the physical properties of imaging devices and
image transmission [1]. Thus, image enhancement is one of
inevitable tasks in image processing [2–6], intending to selectively
highlight or inhibit specific information, adjust the contrast,
smooth the region of interest (ROI), or sharpen the edges or fine
structures in an image. Current state-of-art enhancement algorithms
include the histogram equalisation [3, 4], non-linear unsharp
masking [5], wavelet transform [6], fuzzy sets [1, 2], and so on.
However, the enhancement of images that have weak edges is still
difficult in computer vision and pattern recognition.

According to the assumption that a uniformly distributed
greyscale histogram will result in the best visual contrast,
histogram equalisation methods hold the dominant position in the
field of image enhancement [3, 4]. However, some drawbacks
hinder their development, such as the washed out effect, inability to
preserve edges, and non-preservation of brightness [7]. Moreover,
the ambiguity and uncertainty are unavoidably produced during the
image acquisition or transmission. Accordingly, a valid way
portraying such image should utilise human knowledge expressed
heuristically. This is highly non-linear and cannot be represented
by conventional mathematical modelling [8].

Recently, fuzzy sets theory [9] has attracted great attention in
image processing [1, 2, 10–13], because fuzzy techniques are non-
linear and knowledge based. These algorithms can process
imperfect data derived from vagueness and ambiguity rather than
randomness. Consequently, fuzzy sets- or fuzzy logic-based
methods are properly suited to automatically adjust the contrast,
and then improve the visual quality of an image [7, 13, 14].
Nevertheless, classical fuzzy enhancement methods proposed in [2]
encounter some difficulties. One is that the grey-level range of the
output image is almost unchanged, which suggests that these
methods are unsuitable for enhancing those degraded images with
less grey levels and low contrasts. The other is that the range of
membership function is not a normalisation form [15].
Furthermore, an optimal condition of enhancement is none the less
absent.

Compared with conventional fuzzy sets, intuitionistic fuzzy sets
take into account more uncertainties in the form of membership

function (viz., membership degree, non-membership degree, and
hesitation degree). These fuzzy sets are more conformable to
aspects of human decision making [16]. In recent years,
intuitionistic fuzzy sets have been widely used in various
applications [17–19], such as image denoising [17] and image
fusion [19]. Therefore, we propose a novel enhancement approach
based on intuitionistic fuzzy sets to adaptively enhance images
with weak edges in this paper.

Our method has two advantages. The first is that the
membership function is founded by using the restricted
equivalence function (REF), and the range of membership function
is normalised to [0, 1]. It is suitable to discriminate different parts
of an image. The second advantage is that the new fuzzification,
hyperbolisation, and defuzzification operations are consecutively
implemented on respective object and background areas of each
sub-image. These implementations can be parallel processed. By
applying such method on brain tumour magnetic resonance (MR)
images, mammograms, small target infrared images, and non-
destructive testing (NDT) images, it shows that the designed
method not only works robustly for enhancing different types of
images, but also has a good enhancement performance.

The organisation of the rest of this paper is as follows. Section 2
reviews fuzzy sets, intuitionistic fuzzy sets, and the framework of
fuzzy image enhancement. An intuitionistic fuzzy sets-based
enhancement method is constructed in Section 3. Experimental
results and discussions are given in Section 4. Section 5 presents
conclusions and perspectives.

2 Related work
This section briefly discusses the theories of fuzzy sets and
intuitionistic fuzzy sets, and the framework of fuzzy image
enhancement [1, 2, 9, 16]. These construct the basis of the novel
enhancement scheme.

2.1 Fuzzy sets

Let U be a space of points (objects) set, i.e. U = {u}, where u
denotes a generic element of U. A fuzzy set A = {(u, μA(u), νA(u))|
u∈U} in U is characterised by a membership function μA(u), where
μA(u): U→[0, 1], u→μA(u), and νA(u) = 1−μA(u). The function
μA(u) associates a real number in the interval [0,1] with each point
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in U. The value of μA(u) denotes the membership degree at u in A,
and the value of vA(u) is the non-membership degree. The nearer
the value of μA(u) to unity, the higher will be the grade of
membership degree [9].

An image U of size M × N with L grey levels can be defined as
an array of fuzzy singletons that indicate the membership degree of
each pixel point. The definition of the membership value depends
on the specific needs in applications. Provided that μA(uij)
represents the degree of brightness, the membership degree
proposed in [2] could be described as

�� ��� = Ψ ��� = 1 + �max− ���� −�, (1)

where umax is the maximum grey level in an image, e and d denote
the exponential and denominational fuzzifiers that regulate the
amount of greyness ambiguity in a membership plane. Proper
values for e are 1 and 2. Then d can be obtained from the crossover
point g of the membership function (μ(g) = 0.5) [1].

2.2 Intuitionistic fuzzy sets

Each element in the membership plane is represented by a
membership degree, while the non-membership degree is equal to
1 minus the membership degree according to the conventional
fuzzy sets [9]. However, the membership degree expressed by
human being seldom coincides with the non-membership degree as
the complement to unity [16]. Intuitionistic fuzzy sets can reflect
that fact, which introduces a term of intuitionistic fuzzy index or
hesitation degree owing to the lack of knowledge or ‘personal
error’ [20, 21].

Under the conception of hesitation degree, an intuitionistic
fuzzy set A in a finite U can be represented as (see (2)) where
functions μA(u), νA(u), and οA(u) are the membership degree, non-
membership degree, and hesitation degree, respectively. Some
intuitionistic fuzzy generators can be utilised to form an
intuitionistic fuzzy set, e.g. Sugeno-type intuitionistic fuzzy
generator [16, 20].

2.3 Framework of fuzzy image enhancement

Fuzzy image processing generally has three phases [1, 2]. (i)
Fuzzification Ψ, i.e. an input data U (e.g. features, histograms, grey
levels) is converted into a membership plane. (ii) Operation Γ, i.e.
some proper operator is applied in the membership plane for
special applications (e.g. enhancement [2, 7, 10], thresholding
[16]). (iii) Defuzzification Φ, i.e. if necessary, the adjusted
membership plane is inversely converted into the characteristic
plane, such as features, histograms, and grey levels. Therefore, the
output X of the fuzzy system for an input U is given by the
following processing chain:� = Φ Γ Ψ � , (3)

The main difference to other methodologies in image processing is
that the diversity of fuzzy logic, fuzzy sets, intuitionistic fuzzy sets,
and fuzzy measure theories are conveniently adopted to modify or
aggregate membership values, classify data, or make decisions
using fuzzy inference in the membership plane [1], rather than in
the image plane.

3 Image enhancement based on intuitionistic
fuzzy sets
Since intuitionistic fuzzy sets are more conformable for human
being to make decisions, an image enhancement scheme based on
intuitionistic fuzzy sets is proposed to improve images with weak
edges in this section.

3.1 Membership function

A fuzzy set necessitates precisely assigning a membership degree
to each element of the set. We adopt a REF to construct the
membership function of an intuitionistic fuzzy set.

If ϑ1 and ϑ2 are two automorphisms in a unit interval, a REF
will be denoted as [16, 21]REF �,� = �1−1 1− �2 � − �2 � , � ∈ 0, 1 , � ∈0, 1 , with � � = �2−1 1− �2 � , (4)

where REF: [0,1] × [0,1]→[0,1], and c(x) is a strong negation.
Assume that ϑ1(x) = log[x(exp(1)−1) + 1] and ϑ2(x) = x2, x∈

[0,1], (4) will become

REF �,� = exp 1− �+ � ⋅ � − � − 1exp 1 − 1 , (5)

Then, (5) satisfies the conditions for a REF. The proofs are
displayed as follows:

i. REF(x,y) = REF(y,x), for all x, y∈[0,1].
ii. When x = y, REF(x,y) = 1, and vice versa.
iii. When x = 0, y = 1, or x = 1, y = 0, REF(x,y) = 0, and vice versa.
iv. ∀x, y∈[0,1], then REF(x,y) = REF(c(x),c(y)), where c is a

strong negation (see Appendix 1).
v. ∀x≤y≤z∈[0,1], then REF(x,y) ≥ REF(x,z) and REF(y,z) ≥ 

REF(x,z) (see Appendix 2).

Since REFs are local functions [21], REFs can be adopted as local
indexes to measure some specific property of an image. We utilise
REFs to measure the difference between a pixel and its
neighbourhood region. The membership function μ→[0,1] is
defined as

�� ��� = Ψ ��� = REF ���, �= exp 1− ���+ � ⋅ ���− � − 1exp 1 − 1 , (6)

where uij is the grey value at point (i, j), and v denotes some
property of the neighbourhood region.

Since a foreground (object) or background area has correlations
in both spatial and frequency domains, the membership function
should represent the belonging of a point to the foreground or
background area. Thus, it is necessary to separate an image into
foreground and background areas for enhancement. For a pixel
involved in a foreground or background area, its membership
function is expressed as

�� ��� = Ψ1 ��� , if ��� ≥ ���Ψ2 ��� , if ��� < ��� =exp 1− ���+�0 ⋅ ���−�0 − 1exp 1 − 1 , if ��� ≥ ���exp 1− ���+�1 ⋅ ���−�1 − 1exp 1 − 1 , if ��� < ��� ,
(7)

where m0/m1 denotes the average grey of the foreground/
background area, and uc

A is a certain threshold that separates the
image into the foreground and background areas.

The REF proposed in [16] is REF(x,y) = [exp(1−|x−y|)−1]/
(exp(1)−1), different from (5). However, the membership function
according to [16] may arouse some questions. The analysis is
displayed as follows. Fig. 1a shows a local area of size 7 × 7 with

� = �, �� � , �� � , �� � � ∈ � , s . t . �� � + �� � + �� � = 1, (2)
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49 grey levels. The average grey of this area is 142 (viz., black
rectangular box). The graph of the membership function by using
Eq. (8) in [16] is shown in Fig. 1b, denoted as the deltoid curve.
The circle curve in Fig. 1b is the graph of the membership function
according to (7). In Fig. 1, the x-axis denotes the grey level, the y-
axis denotes the membership degree, and the black dotted line is
the mean of the area. 

The deltoid curve is symmetrical for the dotted line, while that
property is invalid for the circle curve, as shown in Fig. 1b. If the
area is decomposed into two parts, denoted as A and B (the pixel
positions in B are properly rearranged, as shown in the lower part
of Fig. 1a), the distance between A and B by using Eq. (9) in [16]
will be zero (see Appendix 3 for Eqs. (8) and (9)). This implies that
A is so much like B, which is inconsistent with their original grey
comparison. Accordingly, the membership function based on Eq.
(8) in [16] may produce some troubles in particular applications,
such as segmentation or classification. However, the membership
degree according to (7) first increases non-linearly and then
decreases linearly, as shown in Fig. 1b. The divergence between A
and B is 1.8840 rather than 0, which is more suitable to

discriminate the parts A and B (the parameter in Eq. (8) in [16] is
chosen as 0.8).

3.2 Hyperbolisation

After the construction of membership function, a new
hyperbolisation operator is presented to modify the membership
degree of each pixel point involved in object or background areas.
In this section, we consider the following hyperbolisation function:

��′ � = � − �+ � � − � , if 0 ≤ � < ��+ 2− � − � � − � , if � ≤ � ≤ 1, (8)

where µ'
A is the hyperbolised membership degree, x is the original

membership degree, and a is the positive constant.
Fig. 2 shows the relationship between the original and

hyperbolised membership degrees according to the linear, Zadeh,
and our hyperbolisation functions (a = 0.5). The linear and Zadeh
hyperbolisation functions [1, 2] are described as follows:

�� � = �, � ∈ 0, 1 , �� � = 2�2, if 0 ≤ � < 0.51− 2 1− � 2, if 0.5 ≤ � ≤ 1,
(9)

The membership degree is unchanged when the linear
hyperbolisation is used. The Zadeh hyperbolisation function
reduces the fuzziness of a set A by augmenting the values of μA(x)
which are above a and lessening those which are below it, as
shown in Fig. 2. Through our operator, the difference of two parts
in the hyperbolised membership plane is further widened. This is
useful to improve the contrast of specific ROI. Then we utilise this
hyperbolisation operator to hyperbolise membership degrees in
each object or background membership plane, viz. (see (10)) where
µO(uij) and µB(uij) denote original membership degrees in the
object and background membership plane, �Omin and �Omax denote the
minimum and maximum membership degrees in the object
membership plane, while �Bmin and �Bmax denote the minimum and
maximum membership degrees in the background membership
plane.

Fig. 1  Local object or background area and the graphs according to different membership functions
a Local grey area with size of 7 × 7
b Graphs of different membership functions

 

Fig. 2  Relationship between the original and hyperbolised membership
degrees based on the linear, Zadeh, and the presented hyperbolisation
operators

 

��′ ��� = Γ1 �O ��� , ��� ∈ �Γ2 �B ��� , ��� ∈ �
=

�O ��� − �O ��� + �O ��� �O ��� − �O ��� , �Omin ≤ �O ��� ≤ �O ����O ��� + 2− �O ��� − �O ��� �O ��� − �O ��� , �O ��� < �O ��� ≤ �Omax�B ��� − �B ��� + �B ��� �B ��� − �B ��� , �Bmin ≤ �B ��� ≤ �B ����B ��� + 2− �B ��� − �B ��� �B ��� − �B ��� , �B ��� < �B ��� ≤ �Bmax
,

where �O ��� = exp 1− ��� +�0 ⋅ ��� −�0 − 1exp 1 − 1 , �B ��� = exp 1− ��� +�1 ⋅ ��� −�1 − 1exp 1 − 1
(10)
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For the points whose grey levels are near to the average grey of
the object or background area in an image, the presented
hyperbolisation operator augments the belonging of these points to
the area. On the other hand, the operator lessens the belonging of
those points to the object or background area, whose grey levels
are far from the average grey of the area.

3.3 Defuzzification

If necessary, the hyperbolised membership degrees need to be
inversely converted into the pixel levels through the defuzzification
operation. The defuzzification can be described as

���′ = Φ1 �O′ ��� , ��� ∈ �Φ2 �B′ ��� , ��� ∈ � =
�02+ 1− log 1 + exp 1 − 1 �O′ ��� 0.5, �0 ≤ ��� ≤ �max�02− 1− log 1 + exp 1 − 1 �O′ ��� 0.5, ��� ≤ ��� < �0�12+ 1− log 1 + exp 1 − 1 �B′ ��� 0.5, �1 ≤ ��� < ����12− 1− log 1 + exp 1 − 1 �B′ ��� 0.5, �min ≤ ��� < �1

,
(11)

where u'ij denotes the new grey value, umin and umax denote the
minimum and maximum grey values in the original image plane.

3.4 Proposed enhancement method

The process of the proposed image enhancement algorithm is
illustrated in Fig. 3. Without loss of generality, let (U, Ω) be an
image plane with L grey levels, i.e. (U, Ω): U→[0,L−1], Ω→[1,M] 
× [1,N]. The proposed method is initially employed to divide an
image into several windows, (Ui, Ωi), i = 1,2,…,n, where Ωi∩Ωj = 
Ø, i≠j, ∪Ωi = Ω, and n is the number of windows. The window size
is usually set to be 1/1, 1/2, or 1/4 of the image size. Thus, each
window (Ui, Ωi) is segmented into the object area ΩiO and
background area ΩiB by a threshold uc

Ωi, that is, Ωi = ΩiO∪ΩiB.
We can obtain the following relationship:

Ω = Ω1O ∪ Ω1B ∪ Ω2O ∪ Ω2B ∪⋯ ∪ Ω�O ∪ Ω�B =⋃� = 1� Ω�O ∪ ⋃� = 1� Ω�B . (12)

From Sections 3.1to 3.3, the fuzzification Ψk, hyperbolisation
Γk, and defuzzification Φk (k = 1, 2) are successively performed on

the object and background areas in each window. As a result, a new
image plane (U′, Ω) is obtained, whose quality is improved.

4 Results and discussions
In this section, we use four classes of images to demonstrate the
effectiveness and practicality of the proposed method, i.e. brain
tumour MR images, mammograms, small target infrared images,
and NDT images. In our method, an image is first divided into
several windows (sub-images). Then, we adopt Otsu's thresholding
method [22] to separate each window into object and background
areas. Undoubtedly, other thresholding methods can be integrated
with the proposed method, which is out of the scope of this work.

4.1 Brain tumour MR images

MR can non-invasively offer good soft-tissue contrast and high
spatial resolution images, which is the most frequently used
technique for radiologists and surgeons to detect and diagnose
brain tumours. Different MR sequences are used to image different
interesting structures, as shown in Fig. 4. T1-weighted images (e.g.
Fig. 4a) are usually used for the structural analysis. Fig. 4b shows a
T2-weighted image, where abnormal regions (e.g. the oedema and
tumour) and the cerebrospinal fluid (CSF) are bright against the
dark normal brain tissues. In order to separate the brain tumour
from the focal oedema, a T1-enhanced image (gadolinium-DTPA)
is necessary, as shown in Fig. 4c. Since the free water signal is
suppressed in a T2-FLAIR (T2-weighted with fluid-attenuated
inversion recovery) image (see Fig. 4d), the focal oedema is easily
separated from the CSF. The arrows in Fig. 4 denote the interesting
regions. 

Through our method, the corresponding enhanced results of
Figs. 4a–d are shown in Figs. 4e–h. These original and enhanced
images are evaluated by several radiologists and surgeons.
Compared with the original MR images, they agree that: (i) the
focal oedema is more conspicuous in Fig. 4e, and the contrast
between the focal oedema and anatomic structure of the brain is
more obvious; (ii) in Fig. 4f, the focal oedema is highlighted, and
the mass effect (e.g. the midline and brain fold are pressed and
pushed shift) is more obvious; (iii) the active tumour ingredients
are clearer, as shown in Fig. 4g. The contrast between the active
tumour ingredients and the normal brain tissue is evidently
improved; (iv) the influence of free water, CSF, and necrotic cystic
are eliminated, and the focal oedema is more intact and clearer, as
shown in Fig. 4h.

Figs. 5a–d display another original T1-weighted, T2-weighted,
T1-enhanced, and T2-FLAIR brain tumour MR images. The focal
oedemas are phanerous in Figs. 5b and d, while the active tumour
ingredients are invisible in images under different imaging modes.
Through our method, the corresponding enhanced results are
shown in Figs. 5e–h, respectively. Compared with original MR
images, the contrast and the focal oedema in Figs. 5e–h are more
conspicuous and clearer. Thus, it is helpful to discriminate and
diagnose the focal oedema and brain tumour. 

Fig. 3  Block diagram of the proposed fuzzy image enhancement method
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We adopt the measure of enhancement by entropy (EMEE) [23]
to measure the quality of original and enhanced images. EMEE is
based on a Weber-law-based contrast measure. EMEE measure first
divides an image into some blocks with size of p × q, then
calculates the average value of measure results of all blocks in the
entire image. EMEE can be defined as

EMEE�� = − 1�� ∑� = 1
� ∑� = 1

� � �max�min
�ln �max�min , (13)

where β is the constant, Gmax and Gmin are the maximum and
minimum of intensity values in blocks, respectively.

For Figs. 4 and 5, Table 1 lists EMEE values of original and
enhanced MR images, where a higher value suggests better
enhancement performance. From Table 1, we can see that the
enhanced images have higher EMEE values than the original ones. 

Fig. 4  Representative brain tumour MR images (upper) and the corresponding enhanced results (lower) obtained by using the proposed method
a, e T1-weighted image
b, f T2-weighted image
c, g T1-enhanced image
d, h T2-FLAIR image

 

Fig. 5  Other brain tumour MR images (upper) and the enhanced results (lower) based on our method
a, e T1-weighted image
b, f T2-weighted image
c, g T1-enhanced image
d, h T2-FLAIR image

 

Table 1 Comparison of EMEE measure results
Fig. 4 Fig. 5

original 0.8904 1.0026 0.4968 1.0377 0.4757 0.7284 0.4444 0.6028
our method 1.5225 1.5222 1.3981 1.2406 0.9459 1.1667 1.1099 0.8800
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4.2 Mammograms

Breast cancer is the chief cause of death in women among the ages
of 35–55 years. However, screened mammograms are generally
degraded by various types of noise, or blurred owing to the
physical properties of imaging devices. This makes it difficult to
distinguish and diagnose breast cancers. Consequently, it is
necessary to improve the image quality, aiming to enhance the
contrast of specific regions in mammograms without influencing
the acquisition process or burdening the hardware costs.

An original mammogram is shown in Fig. 6a, where the black
curve denotes the location of a mass and is not part of the
processing. We can see that the contrast between the mass and
surrounding normal tissues is very obscure. Through the fuzzy
histogram hyperbolisation method (FHHM) [1], λ-enhancement
method (λ-EM) [24], non-linear filter method (NLFM) [5], and the
proposed method, the corresponding filtered results are shown in
Figs. 6b–e. Comparing Fig. 6a–e, it can be seen that the FHHM
and λ-EM methods slightly enhance the mass region. The NLFM
method improves the contrast of the mass region, but it fail to
provide the edge of mammogram. Fig. 6e provides the clear shape
of mass and edge of mammogram. Figs. 6f–i denote the
thresholding of specific ROI of Figs. 6a–d. The thresholding of
Fig. 6e is added to the original mammogram, as shown in Fig. 6j.
Fig. 6 indicates that our method outperforms the others since the
abnormal regions are very clear and easily discernible. 

Some objective measures can measure the enhancement
performance of different methods, including Michelson law
measure of enhancement (AME) and Michelson law measure of
enhancement by entropy (AMEE) [25]. AME and AMEE measures
divide an image into blocks with size of m × n, and then calculate
the average values of the measure results of all blocks in the entire
image. The definitions of AME and AMEE are

AME�� = − 1�� ∑� = 1
� ∑� = 1

� 20ln �max− �min�max+ �min ,
AMEE�� = − 1�� ∑� = 1

� ∑� = 1
� � �max− �min�max+ �min

�ln �max− �min�max+ �min ,
(14)

where α is the constant, Fmax and Fmin are the maximum and
minimum of intensity values in blocks, respectively.

For each measure, a higher score indicates the better
enhancement performance. Table 2 lists the measure results
obtained by using the FHHM, λ-EM, NLFM, and our method.
Based on the scores, the proposed method gives the best overall
visual quality with an AME score of 115.5410 and an AMEE score
of 0.3299. This demonstrates that our method shows good
performance in improving the contrast of specific regions. 

4.3 Small target infrared images

Due to the long imaging distance, an infrared target is with small
size without concrete shape and texture, and it is usually buried in
low signal-to-clutter ratio (SCR) background clutters and noise [26,
27]. This produces great difficulties in the target detection. For an
image with size of 128 × 128, the size of small target possibly
ranges from 1 × 1 to 5 × 5 pixels. Thus, the aim of enhancement for
this image is to highlight the target and suppress the background as
possible.

Fig. 7a shows a dim small target submerged in the complex sea-
sky background. This suggests that it is impossible to directly
detect the target from the background clutters. Some small target
detection methods are used for comparison, including the
maximum background prediction model (MBPM) [28], the top-hat
filter (THT) [27], and the local contrast measure (LCM) [29]. For
the representative image (viz., Fig. 7a), Figs. 7b–e show the
filtered results obtained by using the MBPM, THT, LCM, and our

Fig. 6  Mammogram enhancement
a Original mammogram
b–e Enhanced results obtained by using the FHHM, λ-EM, NLFM, and our method
f–i Thresholding of a–d
j Thresholding of e added mammogram

 

Table 2 Comparison of AME and AMEE measure results based on different algorithms
Original FHHM λ-EM NLFM Our method

AME 60.6837 51.6923 51.6923 22.3831 115.5410
AMEE 0.3182 0.2654 0.2654 0.1570 0.3299
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method. It can be seen that the target is still obscure in Figs. 7b–d.
This produces great trouble in the detection from these images.
However, the target is clearer in Fig. 7e, in comparison to Figs. 7a–
d. The layers of the target, sky, and sea are visibly distinct in
Fig. 7e, which results in high contrast between the target and
background. Consequently, the target in Fig. 7e is easily detected. 

SCR is used to represent the difficulty in degree of small target
detection. The SCR is

SCR = �t −���� (15)

where mt denotes the average grey of the target, mb and σb denote
the average and standard deviation of grey values in the
neighbouring region around the target, respectively.

As a general rule, the higher the SCR value of a small target
image, the easier will be the detection of targets. Table 3 lists SCR
and AMEE values obtained by using the MBPM, THT, LCM, and
our method. This indicates that the target is most easily detected in
Fig. 7e with a SCR score of 5.4005 and a AMEE score of 0.2167.
Considering Fig. 7 and Table 3, the target is difficult to be detected
as before by using the MBPM, THT, and LCM methods. 

4.4 NDT images

NDT is widely used in science and industry to evaluate the
properties of a material, component, or system without causing
damage [30]. In this section, two real NDT images (denoted as
NDT-1 and NDT-2) are adopted to evaluate the enhancement
performance of the proposed method, as shown in Figs. 8a and 9a.
One image represents a defective thermal image of glass-fibre
reinforced plastics (GFRP) composite material. Its size is 246 × 
227. The other is a cell image with size of 133 × 133. The similar
feature in two NDT images is strong noise, and with weak edges.
Thus, denoising and edge enhancing are chief tasks in the
enhancement of such image. 

For NDT-1 image, the grey levels of the defective region are
similar, so the output image through the contrast adjustment should
not alter that similarity while enlarging the difference between the
defective and circumambient normal regions. Figs. 8b–e show the
enhanced results obtained by using the fuzzy relaxation method
(FRM) [14], FHHM, λ-EM, and our method, respectively.
Comparing Figs. 8a–d, it can be seen that the grey similarity of the
defective region is scarcely changed, but the grey difference
between the defective and normal regions is lessened. This implies
that the recognition of those defective regions is non-trivial in
Figs. 8b–d. However, that grey difference in Fig. 8e is enlarged,

Fig. 7  Enhancement of a dim small target infrared image under sea-sky background
a Original image
b–e Different filtered results obtained by using the MBPM, THT, LCM, and our method

 

Table 3 Comparison of SCR values based on different algorithms
Original MBPM THT LCM Our method

SCR 1.2404 0.4227 0.5465 0.5365 5.4005
AMEE 0.2088 0.1876 0 0.1737 0.2167

 

Fig. 8  Enhancement of NDT-1 image
a Original GFRP image
b–e Different enhanced results obtained by using the FRM, FHHM, λ-EM, and our method

 

Fig. 9  Enhancement of NDT-2 image
a Original cell image
b–e Different enhanced results obtained by using the FRM, FHHM, λ-EM, and our method
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while preserving the similar grey levels in the defective region.
This results in an easy work to recognise the defective region.

The grey levels in cell regions have considerable variability, as
shown in Fig. 9a. Thus, the grey diversity in cell regions should be
remained in the enhancement results. The enhancement results
obtained by using the FRM, FHHM, λ-EM, and our method are
shown in Figs. 9b–e, respectively. We can see that the grey variety
in cell regions is disappeared in Figs. 9b–d. The cell edges are still
weak in Figs. 9c and d. As for the grey diversity remaining and cell
edges enhancing, Fig. 9e is superior to Figs. 9b–d.

Both Figs. 8 and 9 clearly show how the enhancement
algorithms change fine details in images. Their AME and AMEE
measure results are listed in Table 4. It draws a conclusion that our
method is superior to the others since it improves the contrast and
visual quality of the images. The enhanced results obtained by
using our method have no detail information loss. These are useful
for detecting ROIs. 

5 Conclusion
This paper proposes a novel fuzzy image enhancement approach
based on intuitionistic fuzzy sets, aiming to enhance images with
weak edges. The proposed approach divides an image into several
sub-images consecutively followed by new fuzzification,
hyperbolisation, and defuzzification operations implemented on
respective object and background areas of each sub-image. The
implementation can be in parallel processing. Four types of images
are adopted to verify the enhancement performance of the proposed
method, including brain tumour MR images, mammograms, small
target infrared images, and NDT images. Experimental results
demonstrate that the proposed method works robustly and has a
good enhancement performance. This is useful for easily detecting
specific ROIs. In the future, we will improve the flexibility of the
proposed method for some specific applications. We will also
further improve the robustness of our method for noisy images.
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8 Appendix
 
8.1 Appendix 1

Let c:[0,1]→[0,1]. c is a strong negation if it satisfies the following
properties [16]: (i) c(0) = 1 and c(1) = 0; (ii) c(x) ≤ c(y), if x ≥ y
(monotonicity); (iii) c(x) is continuous; (iv) c(x) < c(y), for x > y for
all x, y∈[0,1] (involutivity); (v) c(c(x)) = x, for all x∈[0,1].
 
Proof: According to (4) and (5), c(x) can be described as� � = �2−1 1− �2 ��2 � = �2, � ∈ 0, 1 → � � = 1− �2, � ∈ 0, 1
Then, the above equation satisfies the conditions for strong
negation, which is as follows:

i. c(0) = 1 and c(1) = 0;
ii. 2)�′ � = 1− �2 ′ = (− �/ 1− �2) < 0, ∀� ∈ 0, 1 ,

then c(x) is a monotonically decreasing function in the interval
[0,1];

iii. c(x) is a continuous function;
iv. c(x) is involutive according to the second conclusion;
v. ∀ x∈[0,1], � � � = 1− � � 2 = �2 = �.

Table 4 Comparison of AME and AMEE measure results based on different algorithms
Original FRM FHHM λ-EM Our method

NDT-1 AME 48.3436 36.5907 36.3998 32.7655 52.1148
AMEE 0.2782 0.2370 0.2414 0.2300 0.2817

NDT-2 AME 43.3887 19.9894 20.3164 26.3100 55.9483
AMEE 0.2675 0.1197 0.1553 0.1920 0.2870

 

708 IET Image Process., 2016, Vol. 10 Iss. 10, pp. 701-709
© The Institution of Engineering and Technology 2016



Thus

REF � � , � � = exp 1− � � 2− � � 2 − 1exp 1 − 1= exp 1− �2− �2 − 1exp 1 − 1 = REF �,�
Therefore, (5) satisfies the fourth condition for REF.□

8.2 Appendix 2

 
Proof: Let t = |x2−y2|, ∀x, y∈[0,1], in (5), then t∈[0,1]. Thus, (5)
becomes

REF � = exp 1− � − 1exp 1 − 1
Then, REF(t) is a monotonically decreasing function in the interval
[0,1]. For ∀ x, y, z ∈ [0,1], and x≤y≤z, then x2≤y2≤z2. Then |x2−y2|
≤|x2−z2| and |y2−z2|≤|x2−z2|. Let t1 = |x2−y2|, t2 = |x2−z2|, t3 = |y2−z2|,
then t1≤t2 and t3≤t2, which imply that REF(t2)≤REF(t1) and
REF(t2)≤REF(t3). Thus, REF(x,z) ≤ REF(x,y), and REF(x,z) ≤
REF(y,z).
Therefore, (5) satisfies the fifth condition for REF. □

8.3 Appendix 3

Equation (8) in [16] is described as

� ��� = exp 1− ���−�0 − 1exp 1 − 1 , ��� ≤ �exp 1− ���−�1 − 1exp 1 − 1 , ��� > �
Equation (9) in [16] is described as�IFS �,�
= ∑� ∑�

2− 1− �� ��� + �� ��� exp �� ��� − �� ���− 1− �� ��� + �� ��� exp �� ��� − �� ���+2− 1− �� ��� − �� ��� + �� ��� + �� ���exp �� ��� + �� ��� − �� ��� − �� ���− 1− �� ��� − �� ��� + �� ��� + �� ���exp �� ��� + �� ��� − �� ��� − �� ���
where A = {(u, μA(uij), νA(uij), oA(uij))|uij ∈ A} and B = {(s, μB(sij),
νB(sij), oB(sij))|sij ∈ B} are two intuitionistic fuzzy images.
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