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Dim and small target detection in complex background is considered a difficult and challenging problem.
Conventional algorithms using the local difference/mutation possibly produce high missed or mistaken
detection rates. In this paper, we propose an effective algorithm for detecting dim and small infrared
targets. In order to synchronously enhance targets and suppress complex background clutters, we adopt
an adaptive entropy-based window selection technique to construct a novel local difference measure
(LDM) map of an input image, which measures the dissimilarity between the current region and its
neighboring ones. In this way, the window size can be adaptively regulated according to local statistical
properties. Compared with the original image, the LDM map has less background clutters and noise
residual. This guarantees the lower false alarm rates under the same probability of detection. Subse-
quently, a simple threshold is used to segment the target. More than 600 dim and small infrared target
images against different complex and noisy backgrounds were utilized to validate the detection per-
formance of the proposed approach. Extensive experimental results demonstrate that the proposed
method not only works more stably for different target movements and signal-to-clutter ratio values, but
also has a better performance compared with classical baseline methods. The evaluation results suggest
that the proposed method is simple and effective with regard to detection accuracy.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The performance of detection, identification and tracking of
dim and small targets restricts the development of infrared search
and tracking (IRST) systems, although some relevant techniques
have been widely applied in military/civilian fields, such as precise
guidance, early warning, geological analysis, and industrial flaw
detection [1–12]. The main challenge is that there is scarcely any
prior knowledge about the target shape, target size, and textural
features that could be utilized in the detection, identification and
tracking [3]. Against complicated backgrounds, those problems
will be deteriorated because the target intensities are weak, par-
tially obscured by jamming objects, or buried in clutters and noise.
In these cases, it is difficult to separate targets from complex and
noisy backgrounds.

There exist numerous methods for detecting dim and small
infrared targets. These algorithms could be generally classified into
two groups: track-before-detect (TBD) [8] and detect-before-track
xpsun@wipm.ac.cn (X. Sun),
nzhou@wipm.ac.cn (X. Zhou).
(DBT) methods [2]. Compared with TBD methods, DBT methods
are more powerful because of shorter computation time, and
fewer requirements of assumptions and prior knowledge. In gen-
eral, two successive procedures are involved in most of DBT
methods [1,9]: the pre-detection procedure in a single-frame im-
age and the tracking procedure in multiple-frame images. The
result of the former procedure impacts both the computation and
accuracy of the latter one, especially for applications with fast
moving sensor platforms (for example, airplane- or missile-based
IRST systems) [3].

Generally, dim and small target detection methods are founded
on many assumptions on the target, background, or both of them.
The robustness of target detection methods is dependent on the
appropriateness of assumptions in applications. There are two
assumptions adopted in the majority of DBT methods [6]: the first
is that the background has the correlation in spatial domain and
the stability in time domain, and it occupies the low frequency
portion of an infrared image in frequency domain. The second
assumption is that the target is unrelated to the background and
noise, and it dominates the high frequency portion of the image.
Accordingly, some DBT methods based on these assumptions are
widely used to eliminate background clutters, such as methods
based on the finite or infinite impulse response filter, median filter,
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Top-hat filter [1], Max-mean filter, Max- median filter [13], or
space-time maximum likelihood [14]. However, these methods are
only suitable for those backgrounds whose statistical character-
istics are constant or slowly varying. And then, some methods,
such as the Butterworth high-pass filter [15] or wavelet transform
[16], are utilized to deal with nonlinear, non-stationary or rapidly
varying backgrounds. Recently, the local dependency histogram
[17] and online dictionary learning [18] are applied to detect
moving objects. Moreover, classification-based approaches are
developed to efficiently eliminate various clutter points [19], in-
cluding the nearest neighbor classifier [20], learning-based neural
network [21], and manifold learning [22]. There are still many
other algorithms for detecting dim and small targets, such as the
algorithms based on the tri-feature-based detector [11], statistical
regression [12], or biological vision [23].

Since a dim and small target in an image often occupies several
pixels, the target birth causes remarkable changes of local rather
than global textural characteristics. According to the local differ-
ence between the target and neighboring background clutters,
some methods based on the probabilistic principal component
analysis [24], empirical mode decomposition [25], or sparse ring
representation [9] are developed to detect targets. In addition,
some operators are presented to measure the local mutation/dif-
ference owing to the target occurrence, such as the local contrast
map (LCM) [4], the local mutation weighted information entropy
(LMWIE) [26], and the average gray absolute difference maximum
map (AGADM) [27].

Since the choice of window (block, patch, sub-image, or
neighborhood) size utilized in the above approaches is a difficult
problem, the window size is usually predefined and is invariant in
representing the local difference/mutation. However, if the win-
dow size is too large, those slight changes of textural character-
istics may be undetected and the operation will consume more
computation. Whereas in a window with too small size, some
jamming pixels may be detected as target pixels, such as noise or
pixels affected by illumination variation or other factors. Then, a
proper window size is helpful to discriminate true targets from
jamming objects and clutters. Furthermore, a target has a con-
spicuous discontinuity with its neighboring areas and con-
centrates in a relatively small, homogeneous and compact region.
Where the discontinuity is essentially involved ascertaining the
property of average gray difference founded on the neighboring
pixels [22,27]. Hence, we utilize an adaptive entropy-based win-
dow selection technique to construct a measure that represents
the local difference between the target and neighboring back-
ground clutters. In this way, the window size can be adaptively
regulated according to the local statistical characteristics. After the
local difference measure, the local region whose difference is lar-
ger than a given threshold in some scale may be a position where
the target emerges. With these considerations in mind, we design
a method based on the novel local difference measure (LDM) to
detect dim and small targets submerged in complex and noisy
backgrounds in this paper.

The contributions of this paper can be summarized as follows:
1) An adaptive entropy-based window selection technique is
proposed in the construction of local difference measure. The
window size can be adaptively adjusted according to the local
statistical properties, rather than preset to some fixed value and
invariant across the frames. This can lower missed and false de-
tection rates. 2) A new local difference measure is utilized to en-
hance targets and suppress background clutters and noise syn-
chronously. The LDM map can significantly improve SCR values of
the image and have little clutters and noise residual. This guar-
antees low false alarm rates under the same probability of detec-
tion. 3) A LDM-based detection method is designed to process
infrared images with low SCR values. By applying such method on
more than 600 low SCR images with diverse complicated back-
grounds, it demonstrates that the designed method not only
works more robustly, but also has better detection performance in
comparison to well-known baseline methods.

The remainder of this paper is organized as follows: In Section
2, we explain the LDM-based target detection method in detail. In
Section 3, we give extensive experimental results and discussions.
And Section 4 reaches a conclusion.
2. Dim and small target detection based on LDM

In this section, we introduce a new scheme for detecting dim
and small targets embedded in intricate backgrounds. This scheme
initially adopts an adaptive entropy-based window selection
technique to found a LDM map of an input image that achieves
target enhancement and background suppression at the same
time, and subsequently utilizes a simple threshold to segment
targets from the LDM map. In particular, the LDM scheme can
improve SCR values of the image significantly.

2.1. Entropy-based window selection

Some evidences [4,27] have indicated that a dim and small
target concentrates in a small, homogeneous and compact area.
The target has brightness discontinuity with its surrounding
background clutters from a natural scene. And this discontinuity is
fundamentally involved determining the property of average gray
difference according to neighboring pixels [27]. If a proper mea-
sure is designed to measure the discontinuity between the current
region and its neighboring ones in the scene, the most dissimilar
point will be considered as a target. Owing to the change of
imaging distance, the target size varies within a range, which
suggests that the window (neighborhood or patch) size with re-
spect to the target should be adaptively adjusted in the design of
the measure [3,4]. Moreover, the noise and clutter levels change
across the infrared image frames, which also imply that the widow
size should be adaptively regulated to accommodate the changes
in the noise and clutter from frame- to-frame. However, the prior
knowledge, such as the target size, target velocity, target shape, or
noise and clutter levels, is impossibly acquired in IRST applications.
In this case, we utilize an adaptive entropy-based window selec-
tion technique to appropriately regulate the size of the neighbor-
ing window surrounding the target. Subsequently, a multi-scale
representation model is adopted to measure the discontinuity
between the target region and neighboring background clutters.

Noticed that the information content of a heterogeneous win-
dow in an image is proportional to the fraction of entropy of the
window, patch or sub image [29]. Accordingly, an idea of the
window selection (viz., window size) primarily depends on the
proportion of information content contained in the window and
whole image [29]. In this section, the concept of local entropy is
adopted to represent the information content contained in a
window because it tells how much information there is in an in-
formation source. For a neighboring window, its local entropy is
defined as,

∑= − ( )=

−
E p plog , 1w i

S
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1
2

where pi is the probability density function of the i-th gray level in
the window and S is the maximum gray level. The local entropy is
involved in the variance of gray values in the window [29]. It is
large for a heterogeneous area but small for a homogeneous one.
The appearance of dim and small target enriches the gray value
information in a local area, which means that the target region has
more local entropy than that in background areas.



Fig. 1. Variable neighboring window.

Fig. 2. Dilation of target region.
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After that, if the local entropy of a neighboring window (see
Fig. 1) is comparable to some fraction of the entropy of the whole
image, that is,

λ≥ ⋅ ( )E E , 2w D

the window size will be fixed. Where λ is a constant in an interval
[0,1], Ew is the local entropy of the neighboring window, and ED is
the entropy of the whole image. Otherwise, the window size is
incremented by Δh until the above condition is satisfied. The
window growing process is displayed in Fig. 1, where the initial
size of target region is assumed to be a� b, the final neighboring
window size is Lm� Ln, and the neighboring window is enlarged by
an increment Δh, respectively.

According to Eq. (2), the size of a homogeneous neighboring
window is larger than that of a heterogeneous one. Then the
window surrounding a target is with small size because of the
target birth. Besides, the neighboring window can move in the
image from top to bottom and form left to right. As a result, we
determine the window size centered at each pixel point in the
image once the parameter lambda in Eq. (2) is preset.

In summary, the entropy-based window selection scheme is
described in Algorithm 1, where Ew is the local entropy of the
neighboring window, ED is the entropy of the whole image, Lm and
Ln are positive integers, λ is a constant in [0,1], and Δh is an in-
crement (a small integer), respectively. In general, the user can
manually/experimentally select the coefficient lambda for prac-
tical design requirements, which will be further discussed in detail
in Section 2.5.

Algorithm 1. Entropy-based window selection scheme.
Input: Given a pixel point (x,y) in an image.
Output: A neighboring window centered at the point.

1. Enough scales (Lm and Ln) of the neighboring window (Ew) are
given.

2. Enough scale of the parameter (λ) is given.
3. Compute the whole entropy of the image (ED).
4. Compute the local entropy of the neighboring window (Ew)

according to Eq. (1).
5. ifEwZλ � ED, then
Fix the window size as Lm� Ln.
6. else
7. Enlarge the window size by Δh.
8. Lm� Ln’(Lmþ2 �Δh)� (Lnþ2 �Δh).
9. end if

2.2. LDM

Based on the above, the determination of neighboring window
size depends upon the information content contained in the
window. Once the window size is assigned, denoted as Lm� Ln, the
target region can dilate in the window from a� b to Lm� Ln, where
a� b denotes the initial target size (see Fig. 2). Hence, we can
acquire a series of neighborhoods surrounding the target center,
Ωk, k¼1,2,…,K, where K is the maximum scale of the fixed
neighboring window.

As a matter of fact, the discontinuity between the target region
and surrounding background clutters is relevant to the average
gray difference based on neighboring pixels [27]. The average gray
value of the k-th neighborhood is defined as,
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where Nk is the number of pixels contained in the k-th neigh-
borhood Ωk and gj

k is the gray level of the j-th pixel in Ωk.
The local difference between the target region and the k-th

neighborhood is expressed as the following formula.
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Then, the LDM is defined as,

{ }^ = ^ ⋯ ^
( )E E Emax 0, , , , 5K2

The LDM represents the maximum discontinuity between the
current region and its neighboring ones. When the current region
moves in the image from top to bottom and form left to right, a
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LDM map is constructed. It suggests that the larger LDM is, the
more likely a target appears. Based on this fact, the method to
compute the LDM is described in Algorithm 2, where the size of an
input image is M�N, Ê is the LDM, and K is the largest scale,
respectively.

Algorithm 2. Local difference measure.
Input: Given a frame.
Output: LDM map.

1. forx¼1:Mdo
2. fory¼1:Ndo
Determine the neighboring window according to Algorithm 1.
3. Acquire a set of neighbourhoods, Ωk, k¼1,2,…,K.
4. fork¼1,2,…,K, do
Compute the k-th local difference measure according to Eqs. (3,4).
5. end for
6. Ê(x,y)¼max{0, Ê2(x,y),…, ÊK(x,y)}.
7. Replace the value of central pixel with Ê(x,y).
8. end for
9. end for

2.3. LDM-based dim and small target detection

We know that a dim and small target is discontinuous with its
neighboring areas and concentrates in a small, homogeneous and
compact region. While the background is consistent with its
neighborhoods [4,27]. The LDM broadens the discontinuity be-
tween the target region and surrounding background clutters. As a
result, the target is well enhanced and the background clutters and
noise are effectively suppressed (see Fig. 3). Accordingly, we con-
ceive that, if the final LDM map is achieved, the most salient point
in the scene is probably a target. The LDM-based dim and small
target detection method is described in Algorithm 3, where t1 and
t2 denote the mean and maximum values of the final LDM map,
and ε is a constant. In order to intuitively show the proposed
method, a target detection system is given in Fig. 3.
Fig. 3. Proposed target
Algorithm 3. LDM-based target detection method.
Input: One frame.
Output: Target position.

1. Obtain LDM map according to Algorithm 2.
2. Compute the threshold according to

( )ε ε= ⋅ + − ⋅ ( )T t t1 . 61 2

3. Segment targets from the LDM map according to T.

2.4. Detection ability analysis

From the definition, it can be found that the LDM is able to
enhance the dim and small target and suppress the background
clutters and noise simultaneously (See Fig. 3). Let (x0,y0) be the
center pixel point of the target, its LDM can be expressed as,
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where K is the maximum neighboring window scale according to
Algorithm 1, Ωk

t is the k-th neighborhood, k¼1,2,…,K, Nk
t is the

number of pixels contained in Ωk
t , and (gj

k)t is the gray level of the
j-th pixel in Ωk

t , respectively.
In a dim and small infrared target image, the target is unrelated

to background in spatial domain. There exists brightness differ-
ence between the target and surrounding background clutters
despite that the discrimination is small. Then, for a bright target, it
can be found that,

( ) ≥ ( ) = − ( )+C x y C x y k K, , , where 1, 2, ... , 1, 8k
t

k
t

0 0 1 0 0

Thus,
detection system.
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Therefore,
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For a dark target, we can find that,

˜ ( ) ≤ ˜ ( ) = − ( )+C x y C x y k K, , , where 1, 2, ... , 1, 11k
t
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Likewise, the following expression holds for this case.

˜̂ ( ) ≅ ( )E x y, 1, 12
t

0 0

Accordingly, the local difference measure is distinct in the
bright/dark target region. If the neighboring window size (viz., the
maximal scale of neighborhoods) is selected appropriately, the
LDM value will be near to 1 in the target region.

On the other hand, if the current location is a pixel point in the
background, there exists minor local difference among its neigh-
borhoods because the background has the correlation with the
neighboring areas in spatial domain. Then, the following re-
lationship may be tenable.

( ) ≅ ( ) = − ( )+C x y C x y k K, , , where 1, 2, ... , 1, 13k
b

k
b

0 0 1 0 0

After that,

^ ( ) ≅ ( )E x y, 0, 14
b

0 0

In this way, the LDM value in a target region is greater than that
in a background region. Consequently, the target can be enhanced
and the background can be suppressed effectively. This reveals
that the LDM map takes into account the problems of target en-
hancement and background suppression simultaneously. The
LDM-based dim and small target detection method can work well
for infrared images with diverse complicated backgrounds.

2.5. Discussion

There are two coefficients (viz., the parameter lambda in Eq. (2)
and the parameter epsilon in Algorithm 3) involved in the LDM-
based target detection scheme, which provides design simplicity
and flexibility to accommodate specific requirements in applica-
tions. These coefficients can be manually/experimentally chosen.
Nevertheless, this is a time-consuming approach and difficult to
achieve the best results owing to the criterion lack for quantitative
evaluation. Alternatively, the coefficients can be simply selected
according to some reasonable assumptions.

The maximum neighboring window scale depends on the para-
meter lambda. If the window size is too large, those slight change of
textural features may be undetected. And the operation consumes
more computation. On the other hand, if the window size is too
small, the potential target is possibly covered by the background.
Owing to the long imaging distance, the target size is generally small
in an image. A dim and small target defined by Society of Photo-
Optical Instrumentation Engineers (SPIE) has a total spatial extent of
less than 80 pixels [4]. This category consists of point source targets,
small extended targets, as well as clusters of point source and small
extended targets [4,30]. As a result, a dim and small target occupies
less than 0.15% of an input image with size of 256�256. This cri-
terion is usually independent of the image size [4]. Hence, the ap-
propriate window size in the target region is no larger than 81 pixels.
This is our assumption in experiments, that is, the neighboring
window size in the target region is set to be 9�9. Our assumption
fits the SPIE definition well, and is valid for most cases.

Moreover, the target birth enriches the gray information in a
local area. Because the local entropy is related to the variance of
gray values in the window/sub image [28], the local entropy
value in target region is higher than that in background area. If
the local entropy map of an image is achieved (In our experi-
ments, the window size in computation of local entropy is set to
be 9�9), it is likely that the most salient point in this case is a
target point. This offers a strategy to determine the lambda in
Eq. (2). Across the frames in an image sequence which may have
varying noise and clutter levels, the parameter lambda can be
adjusted, in an adaptive fashion, to accommodate the changes in
the noise and clutter. We have done a large number of data
experiments. The evaluation results suggest that the lambda
selection based on the above strategy can bring satisfying de-
tection performance.

In comparison to the lambda, the parameter epsilon in Algo-
rithm 3 has less influence on the performance of LDM-based target
detection scheme. The reason may be that the LDM map arouses
little clutters and noise residual, especially improves SCR values of
the image significantly (See Section 3 for the detailed discussion).
Hence, the target is easily segmented in the LDM map through a
simple threshold. In the target segmentation, we usually select the
parameter epsilon in an interval [0.5, 0.65], which produces sa-
tisfactory results.
3. Experimental results

In this section, we firstly introduce the evaluation metrics,
baseline methods and data for comparison. After that, we utilize
several infrared image sequences against diverse backgrounds to
demonstrate the effectiveness and feasibility of our method.

3.1. Metrics, baseline methods and data

The major task in detecting a dim and small target embedded
in a complicated background is to availably suppress noise and
background clutters, and then significantly enhance the target [2].
Less clutter and noise residual is a crux to keep lower false alarm
rates under the same probability of detection [3]. Thus, if our
method can eliminate more background clutters and noise, the
target will be detected more readily.

We adopt the SCR [3] and BSF (background suppression factor)
[26] as two metrics in comparison of target enhancement perfor-
mance, because they can measure the residual degree of clutters
and noise after different detection methods. Normally, the higher
SCR and BSF values are, the easier a target can be detected. The
definitions of SCR and BSF are expressed as,

σ= − = ( )SCR m m BSF s s/ , / , 15t b b 1 2

wheremt denotes the mean gray value in the target region,mb and
sb denote the mean and standard deviation of gray values in a
neighboring region surrounding the target, and s1 and s2 denote
the standard deviations of gray values in the original and filtered
images, respectively.

The probability of detection (Pd) and the false alarm rate (Fa)
are generally utilized to evaluate the detection performance of
diverse methods [3,31]. The definitions of Pd and Fa are described
as,

= = ( )Pd n n Fa n n/ , / , 16t c f

where nt, nc, nf, and n denote the number of true detections, the
number of actual targets, the number of false detections, and the
number of images, respectively.

Because our method is to represent the local mutation in an
image causing by the appearance of a dim and small target, we
select some local descriptors that have a similar goal to ours, as



Fig. 4. Dim and small target enhancement: (a1)–(f1) Original images against different complex and noisy backgrounds. (a2)–(f2) 3D gray distribution of (a1)–(f1). (a3)–(f3)
Enhanced results of (a1)–(f1) obtained by using our method. (a4)–(f4) 3D gray distributions of (a3)–(f3).

Table 1
Details of six dim and small target infrared image sequences.

# Frame Image size Target shape Target details Background details

Sequence 1 120 200�256 Circular 1. A long imaging distance.
2. Keeping motionless.

1. Heavy noise.
2. Changing backgrounds.

Sequence 2 110 183�185 Rectangular 1. Two targets.
2. Keeping motionless.

1. Heavy noise.
2. Heavy sea-sky background clutters.

Sequence 3 100 208�208 Circular 1. Low SCR values.
2. Keeping motionless.

1. Heavy noise.

Sequence 4 100 128�128 Rectangular 1. Keeping motion.
2. A changing size within a small range.

1. Heavy noise.
2. Heavy sea-sky background clutters.

Sequence 5 65 200�256 Circular or Rectangular 1. Keeping motion.
2. A changing size within a small range.

1. Relatively homogeneous backgrounds.

Sequence 6 130 196�218 Circular 1. Low SCR values.
2. Keeping motionless.

1. Heavy noise.
2. Heavy sea-sky background clutters.

Fig. 5. 3D gray distributions of regions surrounding the target: (a1)–(g1) 3D gray distributions of original regions. (a2)–(g2) 3D gray distributions of enhanced regions
obtained by using our method.
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baseline methods for comparison, including the LMWIE [26],
AGADM [27], and LCM [4]. Moreover, we also choose other de-
tection methods as baseline methods, such as methods based on
the Top-hat transform (THT) [2], maximum background prediction
model (MBPM) [32], Max-mean filter (MME), or Max-median filter
(MED) [13].
Six dim and small target image sequences with low SCR values
(more that 600 images) are used to compare the proposed
methods with baseline methods, denoted as Sequence 1–6, re-
spectively. The upper row in Fig. 4 is representative images of six
sequences against different backgrounds. The details about targets
and backgrounds are listed in Table 1.



Fig. 6. Enhanced results of Fig. 4(a1)–(f1) obtained by using baseline methods: (a1)–(f1), (a2)–(f2), (a3)–(f3), (a4)–(f4), (a5)–(f5), (a6)–(f6), and (a7)–(f7) Enhanced results
obtained by using the LMWIE, AGADM, LCM, THT, MBPM, MME, and MED methods, respectively.

H. Deng et al. / Pattern Recognition 61 (2017) 66–7772
3.2. Target enhancement

If our method can enhance a dim and small target and suppress
background clutters and noise better, the target is detected more
easily. In order to demonstrate the target enhancement perfor-
mance of the proposed method, extensive images with different
complicated backgrounds are used in this experiment. Some
results are shown in Figs. 4 and 5.
Fig. 4(a1)–(f1) show six original images randomly chosen from

Sequence 1 to 6, where the targets are labeled by arrows. The
corresponding 3D gray distributions are shown in Fig. 4(a2)–(f2),
respectively. The enhanced results obtained by using the proposed
method are shown in Fig. 4(a3)–(f3), and their 3D gray distribu-
tions are shown in Fig. 4(a4)–(f4). The gray value ranges of original



Fig. 7. 3D gray distributions of enhanced regions surrounding the target obtained by using the baseline methods: (a1)–(f1), (a2)–(f2), (a3)–(f3), (a4)–(f4), (a5)–(f5), (a6)–(f6),
and (a7)–(f7) 3D gray distributions of enhanced results obtained by using the LMWIE, AGADM, LCM, THT, MBPM, MME, and MED methods, respectively.

Table 2
Comparison results on six sequences by using SCR.

Original LMWIE AGADM LCM THT MBPM MME MED Our method

Sequence 1 5.7613 7.3036 7.6472 5.9712 3.2314 1.1991 6.8118 7.0124 19.7931
Sequence 2 (left) 1.1512 1.5861 1.0569 1.8309 1.0497 1.2324 1.0862 1.0863 10.9545
Sequence 2 (right) 1.8969 1.0048 1.8833 3.0403 0.8331 1.1209 1.8678 1.8969 11.7004
Sequence 3 1.3966 1.4504 2.5949 3.8462 0.6773 0.6233 2.3266 2.0299 7.0448
Sequence 4 0.7013 3.1909 0.2283 0.2636 0.7976 1.7501 0.2812 0.2294 6.4974
Sequence 5 6.8032 8.2707 6.3913 3.4550 6.4692 1.2944 5.7373 6.9622 20.9301
Sequence 6 2.2053 0.1820 0.5462 1.1107 0.1851 0.2934 0.5283 0.5111 11.8493
Average 2.8451 3.2841 2.9069 2.7883 1.8919 1.0734 2.6627 2.8451 12.6814

Table 3
Comparison results of six sequences by using BSF.

LMWIE AGADM LCM THT MBPM MME MED Our method

Sequence 1 1.3380 0.4178 0.5790 0.5340 0.6999 0.4203 0.4230 2.8469
Sequence 2 1.1664 0.2273 0.2476 0.4743 0.7049 0.2356 0.2388 2.4746
Sequence 3 1.1357 0.4571 0.4591 0.4741 0.6739 0.4725 0.4740 2.6556
Sequence 4 6.1857 0.6002 0.6244 3.9112 2.7125 0.6029 0.6052 6.4557
Sequence 5 0.9148 0.0729 0.1216 0.4614 0.5096 0.0750 0.0773 1.1950
Sequence 6 1.6249 1.0528 1.1058 0.7386 1.0432 1.0460 1.0435 4.9400
Average 2.0609 0.4714 0.5229 1.0989 1.0573 0.4754 0.4770 3.4280
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Fig. 8. Ground-truth and detected trajectories obtained by using our method:
(a) and (b) Ground-truth and detected trajectories of Sequence 4 and 5.
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and result images are normalized to [0,255]. It can be seen that
there are heavy background clutters and noise existed in original
images. But, after our method, the clutters and noise are well
suppressed, and the targets are effectively enhanced. Therefore,
the targets in the enhanced results can be easily detected.

The emergence of a dim and small target produces weak mu-
tation of texture characteristics in the whole image plane, but
causes great changes of texture features in an area surrounding
the target. For Fig. 4(a1)–(f1), 3D gray distributions of areas sur-
rounding the target are shown in Fig. 5(a1)–(g1) (there are two
dim and small targets in Fig. 4(b1)). The corresponding 3D gray
distributions of enhanced results obtained by using our method
are shown in Fig. 5(a2)–(g2). Compared with Fig. 5(a1)–(g1), the
local texture mutation in Fig. 5(a2)–(g2) is more significant. This
demonstrates that our method can enlarge the difference between
the target and surrounding background clutters. Then, the target is
well enhanced.

3.3. Enhancement performance

In order to further prove the enhancement performance of our
method, seven baseline methods are used in the comparison, in-
cluding the LMWIE, AGADM, LCM, THT, MBPM, MME, and MED
methods. Some comparison results are displayed in Figs. 6 and 7,
and Tables 2 and 3.

For Fig. 4(a1)–(f1), Fig. 6 shows the enhanced results obtained
through different baseline methods, and Fig. 7 displays the cor-
responding 3D gray distributions of enhanced regions surrounding
the target. From Figs. 4–7, we can find that our method has less
clutters and noise residual for different complicated backgrounds,
compared with baseline methods. This suggests that the proposed
method can maintain lower false alarm rates under the same
probability of detection. It can draw a conclusion that our method
can efficiently detect targets and perform better than baseline
methods.

Both SCR and BSF are appropriate to demonstrate the detection
performance of different methods and are utilized here for com-
parison. For each individual measure, a higher score means the
better performance. For the six image sequences, Table 2 lists the
average SCR values of the original images and enhanced results
obtained by using the LMWIE, AGADM, LCM, THT, MBPM, MME,
MED and our method. Table 3 displays the average BSF values
obtained by using different methods. Sequence 2 (left) and Se-
quence 2 (right) in Table 2 denote the respective average SCR va-
lues of the left and right targets in Sequence 2. More than 600
images are used to calculate the ensemble average SCR/BSF values,
listed in the bottom rows of Tables 2 and 3. Tables 2 and 3 suggest
that our method is superior to baseline methods with respect to
target enhancement.

The above experimental results demonstrate that the proposed
method is high-performance for enhancing dim and small targets
and suppressing intricate backgrounds simultaneously. Accord-
ingly, the proposed method is robust and effective to detect dim
and small infrared targets submerged in heavy and noisy back-
ground clutters.

3.4. Detection performance

The detected result is considered correct if the pixel distance
between centers of the ground-truth and the result is less than a
threshold (5 pixels [2], 4 pixels [4], and so on). The smaller
threshold chosen implies less distance errors and workload in IRST
applications. We choose the threshold as 3 pixels in this paper.

The targets in Sequence 4 and 5 keep motion in each frame,
while the targets in Sequence 1, 2, 3, and 6 have little motion (see
Table 1). For Sequence 4 and 5, Fig. 8 displays the ground-truth
target movement trajectories and detected trajectories obtained by
using our method. The corresponding histograms of horizontal
and vertical error distributions are shown in Fig. 9. For Sequence 4,
the ground-truth trajectory is linear, and the detected trajectory
does almost match that of the target movement, as shown in Fig. 8
(a). The most horizontal and vertical errors are zeros (a small
number of horizontal errors are less than 2 pixels, and a small
number of vertical errors are 1 pixel), as shown in Fig. 9(a) and (b).
For Sequence 5, the ground-truth trajectory is curvilinear, but the
detected trajectory does almost match that of the target move-
ment as well (see Fig. 8(b)). The horizontal and vertical errors are
shown in Fig. 9(c) and (d), which suggests that the most both
horizontal and vertical errors are less than 1 pixel (a small number
of horizontal errors are 2 pixels). It draws a conclusion from
Figs. 8 and 9 that the proposed method can achieve high prob-
abilities of detection as well as low false alarm rates for different
target movements, SCR values and background clutters.

The receiver operating characteristic (ROC) curve is a graphical
plot of the probabilities of detection (a fraction of true positives
over the positives) versus the false alarm rates (a fraction of false
positives over the negatives). We provide ROC curves obtained by
using the baseline methods and proposed method for the six im-
age sequences in Fig. 10. It suggests that our method has better
detection performance than baseline methods. Especially for Se-
quence 1, 2, 4, and 5, our method owns the highest probabilities of
detection but the lowest false-alarm rates in the comparison. For
Sequence 3 or 6, the LMWIE method has a little better detection
performance than our method when Far0.6 or Far0.5, but our
method can reach 1 faster when Fa40.7 or Fa40.5. For Sequence



Fig. 9. Histograms of detected errors obtained by using our method: (a) and (b) Histograms of horizontal detected errors of Sequence 4 and 5. (c) and (d) Histograms of
vertical detected errors of Sequence 4 and 5.

Fig. 10. ROC curves: (a)–(f) ROC curves of Sequence 1–6 obtained by using the baseline methods and our method.
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Table 4
Comparison of AUC values based on different detection methods.

LMWIE AGADM LCM THT MBPM MME MED Our method

Sequence 1 0.9946 0.9717 0.9932 0.7847 0.9641 0.9035 0.9702 0.9979
Sequence 2 0.0965 0.1069 0.0094 0.0358 0.0914 0.0858 0.0098 0.9296
Sequence 3 0.8299 0.1945 0.0418 0.5334 0.3325 0.4144 0.0178 0.9617
Sequence 4 0.9862 0.9882 0.2292 0.2680 0.8504 0.0714 0.2136 0.9922
Sequence 5 0.9871 0.9868 0.9200 0.9920 0.9830 0.8870 0.9925 0.9982
Sequence 6 0.2196 0.5487 0.4455 0.1796 0.5698 0.5093 0.4564 0.9466
Average 0.6857 0.6328 0.4398 0.4656 0.6319 0.4786 0.4434 0.9710
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3 and 5, the LMWIE method has better performance than the
AGADM, LCM, MBPM, MME, and MED methods. Fig. 10 also shows
that the LCM method is superior to other baseline methods for
Sequence 1, but has low probabilities of detection for other image
sequences. The comparison results derived from Fig. 10 suggests
that the proposed method is suitable for detecting dim and small
target against diverse complex and noisy backgrounds.

The area under the ROC curve (AUC) is widely utilized to
quantitatively evaluate the classification performance of true or
false targets [33,34]. The AUC value is within the range [0,1]. A
higher AUC value obtained by using a method is, the better per-
formance with respect to detection accuracy is. For the above six
image sequences, Table 4 lists the AUC values obtained by using
the baseline methods and the proposed method. The average AUC
values acquired by using the eight methods are listed in the bot-
tom rows of Table 4. It can be seen that the proposed method is
superior to the baseline methods in the AUC comparison. From
Figs. 4–10 and Tables 2–4, it can be found that the proposed
method achieves the best performance, which implies that our
method works more robustly for different target movements and
backgrounds with low SCR values.
4. Conclusion

This paper presents an effective method based on the LDM to
detect dim and small infrared targets embedded in different
background clutters. The key idea of the presented method is to
adopt an adaptive entropy-based window selection technique to
construct a LDM map of an input image, which effectively en-
hances targets and suppresses background clutters and noise si-
multaneously. In this way, the LDM map can significantly improve
SCR values of the image, and have little clutters and noise residual.
This ensures the presented method arouses low false alarm rates
under the same probability of detection. The experiments have
been implemented on more than 600 dim and small target images
against diverse complicated backgrounds, which demonstrate that
the presented method outperforms conventional baseline meth-
ods, such as the LMWIE, AGADM, LCM, THT, MBPM, MME, and
MED methods. The experimental results also justify that the pre-
sented method works more robustly for different target move-
ments and complex and noisy backgrounds.

Although the experimental results justify the robustness of the
presented method and provide empirical evidence, we can even
improve it further more from different perspectives in the future
work. For example, we will investigate a faster version of the
current algorithm, as well as extend the definition of the local
difference measure by applying different operations.
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