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Mammogram Enhancement Using Intuitionistic
Fuzzy Sets

He Deng, Wankai Deng, Xianping Sun, Maili Liu, Chaohui Ye, and Xin Zhou∗

Abstract—Objective: Conventional mammogram en-
hancement methods use transform-domain filtering, which
possibly produce some artifacts or not well highlight
all local details in images. This paper presents a new
enhancement method based on intuitionistic fuzzy sets.
Methods: The presented algorithm initially separates a
mammogram via a global threshold and then fuzzifies
the image utilizing the intuitionistic fuzzy membership
function that adopts restricted equivalence functions. After
that, the presented scheme hyperbolizes membership
degrees of foreground and background areas, defuzzifies
the fuzzy plane, and achieves a filtered image via nor-
malization. Finally, an enhanced mammogram is obtained
by fusing the original image with filtered one. These
implementations can be processed in parallel. Results:
This algorithm can improve the contrast and visual quality
of regions of interest. Conclusion: Real data experiments
demonstrate that our method has better performance
regarding the improvement of contrast and visual quality
of abnormalities in mammograms (such as masses and/or
microcalcifications), compared with classical baseline
methods. Significance: This algorithm has potential for
understanding and determining abnormalities.

Index Terms—Image enhancement, intuitionistic fuzzy
sets (FSs), mammogram.

I. INTRODUCTION

ABOUT 12.3% of women will contract breast cancer in
their lifetime in the United States [1], and that cancer is

the chief cause of death in women between the ages of 35 and 55
years [2]. Currently, the National Cancer Institute estimates that
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the number of new cases of breast cancer was 124.6 per 100 000
people per year, and the number of deaths was 22.2 per 100 000
people per year [1]. At present, the early detection is vital for
treating this epidemic [3]. Several imaging techniques are used
for breast examination, for example, ultrasound, X-ray imaging,
magnetic resonance imaging (MRI), computerized tomography
(CT), and positron emission tomography (PET). Among them,
mammography (X-ray pictures) is mostly applied to detect and
diagnose breast cancer [4]–[6], including digital mammography
and film mammography. Digital mammography owns several
advantages such as the good image quality and detectability,
and low X-ray dose for dense breast, postmenopausal, and/or
older women [7].

Due to the limitations of X-ray hardware systems, screened
mammograms are undoubtedly degraded by different types of
noise or blurred owing to the properties of imaging devices and
image transmission. This potentially presents a low resolution
or poor contrast, making it difficult to distinguish and diagnose
breast diseases [2], [8]. Some methods are used to improve the
visual quality of mammary images [9]–[11]. One is to collect
more images at the data acquisition stage, which increases the
overall acquisition time, the amount of radiation that a patient is
exposed to, hardware costs, and radiologist’s caseload [2], [3].
The other way is to improve the image quality during the image
postprocessing stage, in order to better the contrast of specific
regions and/or objects in mammograms without influencing the
acquisition process or burdening the hardware costs [2].

Several enhancement algorithms have been used to improve
the quality of mammograms, such as methods based on filtering,
histogram equalization (HE), wavelet decomposition, or fuzzy
sets (FSs) theory. They can be roughly categorized into spatial-
and transformation-domain methods. Detailed reviews can be
found in [12]–[14].

Spatial-domain methods: These approaches are based on the
direct manipulation of intensities in images. Statistical based
subband filtering methods are effective to enhance masses and
calcifications in mammary images by inhibiting noise [15], but
these methods possibly cause edge smearing and detail loss [8].
Adaptive enhancement algorithms are desirable to improve the
contrast while preserving edges and details of mammograms,
such as methods based on the adaptive neighborhood [3], [16],
adaptive density weighted contrast [9], or first derivative and
local statistics [17]. Although HE methods hold the dominant
position in the field of enhancement, they potentially result in
excessive contrast enhancement or washed-out effect owing to
the lack of control on the level of enhancement [8]. Thus, some
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methods are explored to overcome those deficiencies, e.g., the
adaptive HE (AHE) and contrast-limited AHE (CLAHE) [18].

Unsharp masking (UM) is good at enhancing fine details of
mammograms but amplifies noise and overshoots steep details
at the same time [19]. Then, some modified schemes such as
the rational UM (RUM) [19] and nonlinear UM (NUM) [2] are
developed to conquer those issues. Sivaramakrishna et al. had
compared the performance of wavelet transformation, CLAHE,
adaptive UM, and adaptive neighborhood contrast enhancement
(ANCE) methods and drawn the conclusion that the ANCE
method was preferred most often [20].

Transformation-domain methods: These methods are based
on the multiscale representation or FSs theory which uses an in-
put/output transformation that changes with the local feature of
a mammogram. Multiscale representation-based methods first
decompose a mammogram into a multiscale subband represen-
tation via the contourlet, discrete dyadic wavelet, or integrated
wavelets [21]–[23]. Next, they modify the transform coefficients
in each subband and reconstruct a result from the modified coef-
ficients. Nevertheless, this wavelet representation way does not
efficiently display both the contour and geometry of edges in
images [2].

Since the ambiguity and uncertainty are inevitably produced
during the acquisition or transmission of mammograms, a valid
mode portraying such images should utilize human knowledge
expressed heuristically. However, this cannot be represented by
the classical mathematical modeling [24]. Consequently, fuzzy
theory, for example, FSs, logical FSs, type-I FSs, type-II FSs, or
intuitionistic FSs (IFSs), are utilized to ameliorate the contrast
and visual quality of images because they are knowledge-based
techniques. These fuzzy methods effectively process imperfect
data derived from vagueness and ambiguity [25]–[33].

However, the classical transformation-domain methods may
generate artifacts called “objectionable blocking effects” [34],
or enhance mammograms globally, but do not well enhance all
local details/regions [2]. Moreover, the gray-level range of an
output image applying type-I FSs is almost unchanged, which
suggests that this method is unsuitable to enhance the degraded
images with less gray levels and low contrast values [35], [36].
Type-II FSs are difficult to use and understand [37]. Therefore,
mammogram enhancement is still a challenge.

In order to design a mammogram enhancement method, it is
inspiring to adopt IFSs theory because IFSs take into account
more uncertainties in the form of membership function that are
more conformable to the aspects of human decision-making, in
comparison to conventional FSs [36]. IFSs have attracted much
attention in image processing field in recent years [38]–[43].
Among these methods, theoretical properties of IFSs model are
studied from mathematical perspectives. As a result, the IFSs
model is beneficial to guide the design of novel enhancement
method. Notice that the nonlinear filtering is well known for its
ability to suppress noise while preserving edges and fine details.
With the earlier considerations in mind, a novel mammogram
enhancement method inspired by the IFSs model and nonlinear
filtering is designed in this paper.

Our method has two advantages. The first is that membership
functions based on the restricted equivalence functions (REFs)

are constructed. The constructed functions are appropriate for
distinguishing different parts of an input mammogram. This is
advantageous to discriminate specific regions of interest (ROIs).
The second advantage is that a simple nonlinear mammogram
enhancement algorithm is designed, which involves only three
parameters. In this case, the designed algorithm is convenient to
manipulate in applications. Experimental results verify that the
designed method is an efficient and simple way to improve the
contrast and visual quality of abnormalities, e.g., masses and/or
microcalcifications in the mammogram. This suggests that the
designed method has potential for understanding abnormal re-
gions of mammary gland images.

The rest of this paper is organized as follows: In Section II,
we review related work. In Section III, we present the designed
mammogram enhancement algorithm in details. In Section IV,
we give experimental results and discussions. And conclusions
and perspectives are given in Section V.

II. RELATED WORK

This section briefly discusses theories of FSs and IFSs, and
the framework of fuzzy image enhancement [36], [38]. These
construct the basis of the novel enhancement scheme.

A. Fuzzy Sets

Suppose that U is a space of points set, an FS A = {(u, μ(u),
ν(u))|u ∈ U} is represented by a membership function μ(u),
where u denotes a generic element of U. In this way, μ(u) is the
membership degree, while v(u) is the non-membership degree.
The μ(u) associates a real number in an interval [0,1] with each
point in U. When A is a classical crisp set, its membership value
takes on only two values 1 and 0, with μ(u) = 1 or 0 according
as u does or does not belong to A.

An image is defined as an array of fuzzy singletons denoting
membership value of each point. The definition of membership
value depends on specific needs in specific applications. For
example, the degree of brightness at pixel point u in [35] is

μ (u) = [1 + (umax − u) /β]−α (1)

where umax is the maximum gray value of the image and α and
β are the exponential and denominational fuzzifiers that regulate
the amount of grayness ambiguity in the membership plane.

B. Intuitionistic FSs

Besides the vagueness, IFSs offer a solid and mathematical
setting to deal with the hesitancy derived from imperfect and/or
imprecise information [38], [44]. IFSs reflect better the aspects
of human behavior compared with the conventional FSs. For a
finite set U, its IFS is

A = {(u, μ (u) , ν (u) , ω (u)) |u ∈ U }

s.t.

{
ν (u) = (1 − μ (u)) / (1 + λ · μ (u))

μ (u) + ν (u) + ω (u) = 1
(2)

where λ is a constant in an interval [0,1] and the functions μ(u),
ν(u), and ω(u) denote the membership degree, nonmembership
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Fig. 1. Block diagram of the MIFS scheme, where a and b are the
scaling factors.

degree, and hesitation degree. μ(u) can be constructed using
REFs [45], logarithmic functions, exponential functions, S and
Z functions, or others [42].

C. Framework of Fuzzy Enhancement

There are three phases involved into the mostly fuzzy image
processing approaches [36]:

1) Fuzzification Ψ, viz., the input data U (histograms, gray
levels, features, etc.) is converted into a membership
plane.

2) Operation Γ, viz., some valid operator is applied in the
membership plane for special applications, e.g., the en-
hancement and thresholding.

3) Defuzzification Φ, viz., if necessary, the adjusted mem-
bership plane will be inversely converted into the char-
acteristic plane, such as histograms, gray levels, features.
Therefore, the output X of the fuzzy system for an input
U is given by the following processing chain:

X = Φ(Γ (Ψ (U))) (3)

The major difference to other methodologies in the image
processing is that the input data U is handled in the membership
plane where one makes use of the diversity of FSs, IFSs, fuzzy
logical, or fuzzy measure theories to modify and/or aggregate
membership values, or classify data [36]. The new membership
values are retransformed into the pixel plane to generate new
characteristics, such as histograms, gray levels.

III. MIFS

Integrating the fuzzy filtering (based on IFSs) with nonlinear
fusion operators, we present a new fuzzy enhancement scheme,
called as mammogram enhancement using intuitionistic fuzzy
sets (MIFS), for mammogram enhancement in this section. This
MIFS scheme is good at highlighting fine details, such as masses
and/or microcalcifications in mammograms.

A. MIFS Scheme

Since a foreground/background area has correlations in both
spatial and frequency domain, it is necessary to divide an image
into foreground and background areas for image enhancement.
The block diagram of the MIFS scheme is shown in Fig. 1. An
original mammogram I(u) is separated into the foreground area
IO (u) and background area IB (u) via a threshold. After that,

the filtered areas [viz., FO (u) and FB (u)] are achieved through
fuzzy operations. Via normalization, the filtered mammogram
D(u) is combined with the original image by using the fusions
#1, #2 and #3 to acquire an enhanced mammogram E(u).

Steps for mammogram enhancement using an intuitionistic
fuzzy algorithm are as follows.

Step 1: Separate a mammogram into the foreground area and
background area.

Step 2: Construct intuitionistic fuzzification generators of the
foreground and background areas, and then convert the pixel
plane into a membership plane.

Step 3: Hyperbolize respective membership degrees of the fore-
ground and background areas.

Step 4: Retransform the membership plane into a pixel plane,
so achieve a filtered result through normalization.

Step 5: Obtain an enhanced result by combining the filtered
result with the original image.

Forthcoming sections depict each step of the scheme briefly.

B. Step 1: Selection of Threshold

Global thresholding methods are easy to implement and also
computationally less involved [46], such as the Otsu, minimum
error, and Parzen window estimate methods [47]. But each way
has pros and cons. In this section, we adopt an iterative strategy
to automatically divide a mammogram into the foreground and
background areas. The selection of foreground or background
does not require an input, for example, the indication of ROIs,
the location of the breast, or the image feature from a user.

For an input mammogram, the following iterative strategy is
used to find a global threshold, where λ is a predefined constant.

1) Initialize the global threshold T, T = 0.5 · (Imax +
Imin), where Imax and Imin denote the maximum and
minimum gray values of the mammogram.

2) Segment the mammogram using T. This engenders two
groups of pixels: I1 composing of all pixels with gray
values ≥ T , and I2 consisting of pixels with values <T.

3) Calculate the average gray values m1 and m2 for the
pixels in I1 and I2 , respectively.

4) Compute a new threshold value: T− = 0.5 · (m1 + m2).
5) If |T − T− | > λ, let T = T− and repeat Steps 2) through

4). Or else, achieve a final segmentation threshold Ŧ.

C. Step 2: Fuzzification

We use REFs to construct membership function of IFSs. If
functions θ1 and θ2 are two automorphisms in a unit interval, an
REF can be defined as

REF : [0, 1] × [0, 1] → [0, 1]

REF (x, y) = θ−1
1 (1 − |θ2 (x) − θ2 (y)|) ,

with c (x) = θ−1
2 (1 − θ2 (x)) (4)

where c(x) is a strong negation.
Let us consider θ2(x) = x2 , 0 ≤ x ≤ 1. Hence, an REF

is defined as REF(x, y) = θ−1
1 (1 − |x2 − y2 |). Subsequently,

let θ1(x) = log((e − 1)x + 1). Through inverse function, we
get θ−1

1 (x) = 0.582 · (ex − 1), where e = exp(1) and 1/(e −
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Fig. 2. Local gray area with size of 9 × 9 (left) and the corresponding
gray map (right). The map is divided into the part A and part B according
to the curve in the right column.

1) ≈ 0.582. Therefore, the REF becomes

REF (x, y) = 0.582 · exp (1 − |x + y| · |x − y|) − 0.582.
(5)

It is easy to prove that the aforementioned function satis-
fies conditions of REFs. Different to (5), a Chaira’s REF used
in [38] was cREF(x, y) = 0.582 · exp(1 − |x − y|) − 0.582.
Fig. 2 shows a local area of size 9 × 9 with 81 gray levels and
the corresponding gray map. The average gray of this area is
160 (viz., the rectangular box). We divide the area into part A
and B according to the average gray, where the line is the sepa-
ratrix. If x denotes the gray value at point of part A or part B and
y represents the average gray value of that part, the intuition-
istic fuzzy divergence [38] between part A and part B is zero
based on Chaira’s REF (via normalization). In this way, part A
so resembles part B in the membership plane, which is differ-
ent from the original gray difference. This implies that Chaira’s
REF potentially results in misclassification in segmentation or
classification. However, according to the proposed REF, the di-
vergence between parts A and B is 0.3231 rather than 0 (the
parameter in the intuitionistic fuzzy divergence is chosen as
0.85). This indicates that the REF based on (5) is appropriate to
discriminate part A and part B.

After that, we utilize the gray value xu at point u in an im-
age block (viz., the foreground or background area) to replace
the variable x, and the average gray value of the block (viz.,
mO /mB ) to substitute the variable y in (5). Then, the fuzzifica-
tion for the foreground area can be expressed as

μO (u) = 0.582 · exp (1 − |xu + mO | · |xu − mO |) − 0.582.
(6)

And the fuzzification for the background area is

μB (u) = 0.582 · exp (1 − |xu + mB | · |xu − mB |) − 0.582
(7)

where μO (u) and μB (u) denote the membership functions of
the foreground and background areas. The fuzzification function
is considered as the belongingness of a pixel to the image block.
When traversing the entire image, the pixel plane is converted
into the membership plane according to (6) and (7).

D. Step 3: Hyperbolization

After the fuzzification, a proper hyperbolization operation is
necessary to enlarge the belongingness of the points whose gray
levels are close to the average gray value of an image block and

Fig. 3. Relationship between the original and hyperbolized member-
ship degrees based on the linear, Zadeh, and proposed hyperbolization
operators.

lessen the belongingness of those points whose gray levels are
far from that average.

For membership degrees of a foreground area, we utilize the
following hyperbolization:

μ′
O (u) =⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μO (th) − √
μ2

O (th) − μ2
O (u)

if (μO )min ≤ μO (u) ≤ μO (th)

μO (th) +
√

(1 − μO (th))2 − (1 − μO (u))2

if μO (th) < μO (u) ≤ (μO )max

where μO (th) = 0.582 · exp (1 − |th + mO |
· |th − mO |) − 0.582. (8)

And the hyperbolization for a background area is

μ′
B (u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μB (th) − √
μ2

B (th) − μ2
B (u)

if (μB )min ≤ μB (u) ≤ μB (th)

μB (th) +
√

(1 − μB (th))2 − (1 − μB (u))2

if μB (th) < μB (u) ≤ (μB )max

where μB (th) = 0.582 · exp (1 − |th + mB |
· |th − mB |) − 0.582 (9)

where μ′
O and μ′

B are the hyperbolized membership degrees;
th is the threshold according to the iterative strategy as men-
tioned earlier; (μO )min and (μO )max , respectively, denote the
minimum and maximum membership degrees of the foreground
area; (μB )min and (μB )max , respectively, denote the minimum
and maximum membership degrees of the background area; and
mO and mB denote the average gray values of the foreground
and background areas, respectively.

As in Fig. 3, the theoretical relationship between the origi-
nal and hyperbolized membership degrees is displayed, where
the solid line, the dotted curve, and the solid curve denote the
graphs of hyperbolized functions according to the linear, Zadeh
[35] (the crossover point is set as 0.5), and the proposed hy-
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perbolization operators. The vertical line is the division surface
between the foreground and background areas. The μB (th) in
(9) is set to 0.2950, and the μO (th) in (8) is viewed as 0.7950.
The selection of μB (th) and μO (th) in this case is random. In
applications, these parameters can be automatically determined
according to (8) and (9) once given a mammogram (Since an
image is given, the threshold is decided according to the earlier
iterative strategy. After that, the foreground/background area is
divided by using the threshold. Then, the average gray values
of foreground/ background areas are defined. And finally, the
μB (th) and μO (th) are achieved.) It can be found from Fig. 3
that the difference of two parts in the hyperbolized membership
plane is augmented via the proposed hyperbolized operator. This
is useful to improve the contrast of specific ROIs.

E. Step 4: Defuzzification

Through Step 3, we gain hyperbolized membership degrees
at each point in foreground/background area. If necessary, the
hyperbolized membership plane is retransformed into a pixel
plane through defuzzification operation.

Accordingly, the defuzzification for the foreground area is

FO (u)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
m2

O + 1 − log (1 + 1.718 · μ′
O (u))

if mO ≤ xu ≤ xmax√
m2

O − 1 + log (1 + 1.718 · μ′
O (u))

if th ≤ xu < mO

.

(10)
And the defuzzification for the background area is

FB (u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
m2

B + 1 − log (1 + 1.718 · μ′
B (u))

if mB ≤ xu ≤ th√
m2

B − 1 + log (1 + 1.718 · μ′
B (u))

if xmin ≤ xu < mB

(11)
where FO and FB denote the new gray value at the pixel point
in foreground and background areas, and xmin and xmax denote
the minimum and maximum gray values of the original image.

As a result, a normalized mammogram is achieved through

D (u) = Δ (Fu ) = (Fmax − Fu ) / (Fmax − Fmin) (12)

where Fu is the value at point u in the new pixel plane and Fmax
and Fmin are, respectively, the maximum and minimum values
of the new pixel plane, respectively.

F. Step 5: Fusion

For different applications, the fusions #1, #2, and #3 shown in
Fig. 1 could be chosen as the arithmetic or logic operations, or
parameterized logarithmic image processing (PLIP) [48]. This
property helps the MIFS fulfill more general and complicated
demands for different applications. Since arithmetic operations
show better performance than PLIP [2], we adopt the arithmetic
addition and multiplication for the MIFS in this paper. Then the
enhanced mammogram is

E (u) = a · I (u) + b · (D (u) ⊗ I (u))

where D (u) = Δ (Φ (Γ (Ψ (I (u))))) (13)

TABLE I
MOS RATING SCALE

Rating Image Quality Distortion

5 Excellent Imperceptible
4 Good Just perceptible, not annoying
3 Fair Perceptible, slightly annoying
2 Poor Annoying, but not objectionable
1 Bad Very annoying, objectionable

where a and b are the scaling factors; I(u) denotes the original
mammogram; functions Ψ, Γ, Φ, and Δ denote the fuzzification,
hyperbolization, defuzzification, and normalization operations
implemented orderly on I(u); and⊗ is the dot-product operation.

IV. EXPERIMENTAL RESULTS

In this section, we first introduce the evaluation metrics, base-
line methods, and data for comparison. After that, we utilize
abundant mammograms selected from some cancer hospitals to
demonstrate the effectiveness of the proposed method.

A. Metrics, Baseline Methods, and Data

The mean opinion score (MOS) is a general measure used in
the subjective evaluation of image enhancement [2], depending
on the visual acuity of observers. The MOS is recommended
by the IEEE Subcommittee on Subjective Methods and Inter-
national Telecommunications Union. The MOS uses five-scale
rating of image quality, as shown in Table I. The observers
can describe their impression of the image quality only in five
discrete steps according to the defined scale.

Besides MOSs, some objective measures have been explored
to measure the enhancement performance of different methods,
such as the Weber-law-based contrast measures, Michelson law
measures of enhancement, and logarithmic Michelson contrast
measures. However, these measures are sensitive to noise and
steep edges in images [2]. As a result, we utilize the contrast (C)
[21], contrast improvement (CI), region contrast (RC) [10], and
RC improvement (RCI) as metrics in comparison of different
enhancement methods. The contrast is independent of the actual
range of gray levels in image, and the RC is insensitive to the
noise and jitter [10]. For an image I, the definitions of C, CI,
RC, and RCI are given as

C = (Co − Cb) / (Co + Cb)

and CI = CEnhanced/COriginal

RC =
1

m × n

∑
(i,j )∈Ω

|c (i, j)| · log (1 + |c (i, j)|)

and RCI = RCEnhanced/RCOriginal

where c (i, j) = 4I (i, j) − {I (i − 1, j)

+ I (i, j − 1) + I (i + 1, j) + I (i, j + 1)} (14)

where Co and Cb denote the average gray values of object
and background areas in the image, CEnhanced and COriginal
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Fig. 4. MOS histograms of original and enhanced mammograms through different algorithms. (a) MOS histogram of original images. (b)−(h) MOS
histograms of enhanced images obtained by using the ZIM, LEM, RUM, NUM, NILC, FBF, and MIFS algorithms. Where Mean and Std. Dev. denote
the mean and standard deviation of MOS values, N denotes the number of images, and the red curves denote the fitted Rician curves, respectively.

denote the contrast values of enhanced and original images,
I(i, j) denotes the gray value at point (i, j), Ω denotes a region
of the image (the size of Ω is m × n), and RCEnhanced and
RCOriginal denote the RC values of enhanced and original ROIs,
respectively. For each subjective/objective measure, a higher
value denotes the better enhancement performance.

Since the MIFS method involves the fuzzy filtering process
and fusion process, we use two fuzzy enhancement techniques
as baseline methods, including Zadeh’s intensification method
(ZIM) [35] and lambda-enhancement method (LEM) [36]. The
RUM [19] and NUM [2] fuse the filtered portion of a mammo-
gram with the original one, which is similar to the MIFS. Hence,
the RUM and NUM are also used as baseline algorithms for
comparison. Moreover, the proposed method is compared with
some recently proposed enhancement ways, namely, the nonuni-
formly illuminated and low-contrast enhancement algorithm
(NILC) [49] and the fast bilateral filter algorithm (FBF) [50].

We used 32 mammograms randomly selected from Tianjin
Cancer Hospital and Hubei Cancer Hospital, China, to validate
the enhancement performance of the proposed MIFS algorithm.
Some experimental results are shown in Tables III to VIII and
Figs. 4−11. According to the breast disease types, the test mam-
mograms were classified into seven groups, denoted as Groups
1 to 7 (16 patients were involved in this study). Details regarding
the number of patients, patient age (years), number of images,
and breast disease pathology for each group are listed in Table II.
Moreover, the window/leveling was fixed on all original and fil-
tered images. The fixed window/level matched to the original
mammograms.

B. Enhancement Measures

A set of 32 test mammograms is randomly selected from
Tianjin Cancer Hospital and Hubei Cancer Hospital. All test im-
ages are processed using the ZIM, LEM, RUM, NUM, NILC,

FBF, and MIFS methods. Hence, including the original and
processed mammograms, there are 256 test images in total
(32 × 8 = 256) for both subjective and objective comparisons.

In the subjective evaluation test, five experts, including three
radiologists and two surgeons majoring in the mammary gland
diseases visually evaluated all original and processed images.
Each expert has at least ten years of experience in the related
field. All the observers were unaware of which method was used
in processed images, and all test images were in a random order.
The observers assessed and gave a score for every test image.
This resulted in eight MOS matrices with size of 32 × 5.

The MOS histogram of original mammograms is displayed
in Fig. 4(a), where the vertical axis denotes the frequency and
the horizontal axis denotes the MOS levels. The number of bars
in the histogram is set to 20. The number of images, mean and
standard deviation of MOS scores, and fitted Rician curve are
also displayed in Fig. 4(a). The mean MOS score of original
images is 2.8550, which suggests that the original quality is fair
and the distortion is perceptible and slightly annoying. After the
ZIM, LEM, RUM, NUM, NILC, FBF, and MIFS methods, the
corresponding MOS histograms of processed mammograms are
shown in Fig. 4(b)–(h), respectively. The meaning of graphs is
the same as that shown in Fig. 4(a), viz., the number of bars in
histograms is always set to 20, and the data is fitted through the
Rician distribution. The mean MOS score listed in Fig. 4(d) is
2.3210, which implies that the visual quality of results obtained
by using the RUM method is somewhat poor and the distortion
is annoying. The visual quality of processed images obtained
by using the ZIM and LEM is fair, and the distortion is slightly
annoying. However, the mean MOS score shown in Fig. 4(h) is
3.8439. This indicates that the visual quality of results obtained
by using the MIFS algorithm is some good and the distortion is
slightly perceptible and not annoying.

Table III displays the average subjective evaluation scores
of each observer for original and processed images categorized
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Fig. 5. Statistical analysis of subjective evaluation scores.

by the ZIM, LEM, RUM, NUM, NILC, FBF, and MIFS methods.
Based on the scores, the MIFS method achieves the best overall
visual quality with scores of 4.0753, 3.7185, 3.8046, 3.9095,
and 3.7118, while the RUM method obtains the worst quality
with scores of 2.9978, 1.6586, 2.3994, 1.9675, and 2.5819.

The subjective evaluation scores were tested for significant
differences using a two-tailed Student’s t-test. Fig. 5 displays
the statistical analysis of MOS scores, where the vertical axis
denotes MOS scores, and the horizontal axis denotes different
enhancement methods. The p-values are statistical differences
between the MOS scores of results obtained by using the MIFS
and the MOS scores of the original images or results acquired
by using the ZIM, LEM, RUM, NUM, NILC, and FBF methods.
The error bars denote the mean ± standard deviation of MOS
scores. From Fig. 5, we can find that all the p-values in multiple
comparisons are smaller than 0.01. This indicates that the MIFS
is statistically significantly different to the original as well as
baseline methods in MOS comparison.

After that, we utilize four objective indexes (viz., C, CI, RC,
and RCI) to measure the image quality of all 256 test mammo-
grams. For the calculation of C and CI, some experts initially
identified the true object (e.g., the mass and/or calcification),
then the rectangular object area surrounding the true object were
determined. Similar to the calculation of C and CI, some experts
first chose the rectangular ROI, and then the RC and RCI were
computed in this ROI.

For each group of mammograms, Table IV lists the contrast
values of the original or processed images classified by the ZIM,
LEM, RUM, NUM, NILC, FBF, and MIFS algorithms. The
measure results listed in Table IV are average contrast values of
each group. It can be seen that different enhancement methods
produce diverse measure results for the original and processed
images. Table IV indicates that the MIFS gives the best visual
quality with scores of 0.4207, 0.5011, 0.6296, 0.6335, 0.5136,
0.6144, and 0.7571, and the ensemble average contrast value
is 0.5814. However, the RUM obtains the worst visual quality
with scores of 0.2466, 0.2952, 0.2957, 0.2970, 0.2443, 0.3089,
and 0.3597, and the ensemble average value is 0.2925. Similar
to Table IV, the measure results shown in Table V are average
CI values of each group. It can be found from Tables IV and V
that the MIFS is superior to the baseline methods with respect
to the C and CI.

Fig. 6. Enhancement analysis. Top row, from left to right, are (a1) the
original image of the left breast with IDC, (b1) original image of the
right breast with IDC, and (c1) the enhanced results of the left and (d1)
right breasts obtained by using the MIFS algorithm, where the arrows
indicate the locations of abnormalities. Cropped regions delineated by
the rectangles in the top row are shown in the second row (a2)−(d2), the
negative grayscale regions are shown in the third row (a3)−(d3), and the
thresholding of cropped regions are shown in the fourth row (a4)−(d4).

In addition, Table VI lists the average RC values of origi-
nal and processed images obtained by using different enhance-
ment algorithms for each group. The RCI values are listed in
Table VII. For seven groups of mammograms, the MIFS scheme
achieves the RC values with scores of 2.5803, 1.9624, 5.8578,
3.7921, 3.3986, 3.6373, and 3.1642, as well as the RCI values
with scores of 1.7130, 1.6134, 2.3911, 1.9906, 1.8301, 2.3480,
and 1.9935, respectively. The earlier objective measures (viz.,
C, CI, RC, and RCI) indicate MIFS-enhanced mammograms as
the best. It is in accord with the conclusion derived from the
MOS evaluation results.

C. Enhancement Analysis

Many different methods can be used to analyze enhancement
results, such as the negative view as well as the thresholding
of designated ROIs. Fig. 6(a1) and (b1) shows two mammo-
grams with infiltrating ductal carcinoma (IDC), where arrows
indicate the location of IDC. The boundaries between the nor-
mal and abnormal tissues are much blurry. Through the MIFS
method, the enhanced results are displayed in Fig. 6(c1) and
(d1). It can be seen that the abnormal regions is clear and easily



1810 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 64, NO. 8, AUGUST 2017

Fig. 7. Enhancement of IC mammograms. Upper row (from left to right)
(a)–(d): original images, where the arrows indicate the locations of ab-
normalities. Lower row (e)–(h): the corresponding enhanced results ob-
tained by using the MIFS algorithm.

discernible. The cropped regions delineated by the rectangles
in Fig. 6(a1)−(d1) are shown in (a2)−(d2). The negative pho-
tographs and thresholding of specific ROIs are displayed in Fig.
6(a3)−(d3) and (a4)−(d4), respectively. It can be found that the
lesions are more easily recognizable in enhanced results, when
compared with original mammograms. The window/level set
for ROIs in the enhanced and nonenhanced mammograms are
the same.

A radiologist primarily concentrates on bright areas of a film
when he or she diagnoses a mammogram [3]. If the gray level
range of an abnormal region is enlarged, the details in ROIs will
be highlighted. As shown in Fig. 6, the contrast/shape/details of
the IDC regions is improved in the enhanced results. In this way,
the improvement is valuable to a radiologist or nonradiologist
reader for understanding those abnormalities. Fig. 6 verifies the
MIFS scheme efficient performance for improving the contrast
of specific regions and/or details in mammograms.

Four original mammograms with intraductal carcinoma (IC)
are shown in Fig. 7(a)–(d), and the locations of abnormalities are
marked by the arrows. We can see that there is obscure contrast/
density difference between the lesions and surrounding normal
tissues. However, after the MIFS algorithm, that difference is
amplified, as shown in Fig. 7(e)–(h). Then, the abnormalities are
easily delineated. This is helpful for surgeons and radiologists
to discriminate and diagnose mammary gland diseases.

Furthermore, all nonenhanced and enhanced mammograms
obtained by using the MIFS are assessed by several radiologists
from Hubei Cancer Hospital. Compared with original images,
they agree on the following:

1) Fig. 6 extracts and separates adipose tissues, normal gland,
and suspicious lesion areas. In this case, it can not only de-
crease the interference of overlapping images but also better the
diagnostic efficiency of high positive regions.

2) The enhanced results better the visualization of lesion
features (such as the density, shape, and edge) and the structure
of adjacent tissues, as shown in Figs. 6 and 7.

3) The distribution of masses and/or microcalcifications is
clearer in the enhanced results, as shown from Figs. 7 to 11.

Fig. 8. Enhancement comparison. (a1) and (a2), (b1) and (b2), (c1)
and (c2), (d1) and (d2), (e1) and (e2), and (f1) and (f2) enhanced results
of Figs. 6(a1) and (b1), obtained by using the ZIM, LEM, RUM, NUM,
NILC, and FBF methods, respectively.

This is helpful to accurately outline the range and location of
lesions that tend to response the actual infiltration area of cancer
focus.

4) The enhanced results can clearly reflect the lucent bubbles
in the parenchyma and enlarge the density difference in the
compact cancers. The trabecula and vessels around the lesions
are sharper in enhanced results.

D. Enhancement Comparison

For the images with IDC shown in Fig. 6(a1) and (b1), the
filtered results obtained by using the ZIM, LEM, RUM, NUM,
NILC, and FBF methods are displayed in Fig. 8(a1) and (a2),
(b1) and (b2), (c1) and (c2), (d1) and (d2), (e1) and (e2), and (f1)
and (f2), respectively. These filtered mammograms are cropped
into images with small sizes for analysis according to the ROIs
size. The baseline methods slightly improve the visual quality
of the right breast image [viz., Fig. 6(b1)/(b2)] except the NILC.
However, all the baseline algorithms have very limited visual
improvement for the left breast mammogram [viz., Fig. 6(a1)
or (a2)]. Especially, the NILC overenhances lesion regions of
both the left and right mammary gland images, making the
lesions more unidentifiable than the original ones. Besides, the
RUM overenhances the background of the images. Comparing
Fig. 6 with Fig. 8, it can be seen that the proposed method is
superior to the baseline methods because the abnormal regions in
Fig. 6(c2) and (d2) are clearer and more recognizable.

The enhanced results of IC mammograms obtained by us-
ing the six baseline methods are shown in Fig. 9(a1)−(a4),
(b1)−(b4), (c1)−(c4), (d1)−(d4), (e1)−(e4), and (f1)−(f4).
Comparing Fig. 7 with Fig. 9, the proposed method generates
better visual quality and local contrast. Moreover, it can be seen
that the fine details in Fig. 7 are distinctly improved, and the
abnormal regions (for example masses and/or microcalcifica-
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Fig. 9. Enhanced results of IC images obtained by using the baseline
methods. (a1)−(a4), (b1)−(b4), (c1)−(c4), (d1)−(d4), (e1)−(e4), and
(f1)−(f4) enhanced results obtained by using the ZIM, LEM, RUM, NUM,
NILC, and FBF algorithms.

tions) are more discriminable. In this way, the MIFS is helpful
to discriminate abnormalities in mammograms.

The subjective and objective measure results (viz., MOS, C,
CI, RC, and RCI) shown in Tables III to VII demonstrate this as
well. Consequently, the quantitative and qualitative comparison
demonstrates that the MIFS algorithm has better enhancement
performance than the baseline methods. This is advantageous to
discriminate and diagnose the abnormalities in mammograms,
guide the operation, judge the prognosis, and conveniently plan
the radiotherapy.

E. Regions of Interest

When a radiologist views a digitized mammogram, he or she
usually observes the architectural abnormalities and describes
their locations, that is, selects an ROI. If an enhanced version of
ROI presents alongside the original image, the radiologist can
switch between the original mammogram and the automatically
enhanced views for comparison. Accordingly, he or she can
easily delineate any new details or features which are apparent to
him or her, even identify some subtle findings in mammograms.

Four mammograms with masses and/or microcalcifications
are displayed in Fig. 10(a1)−(d1), where the arrows point
out the locations of the abnormalities. The green rectangles
indicate the ROIs selected by a radiologist, as shown in Fig.
10(a2)−(d2). We can see that the contrast of abnormalities is

Fig. 10. Enhancement of ROIs. Top row (a1)−(d1): Original mammo-
grams with masses and/or microcalcifications. Cropped ROIs delineated
by the rectangles in the top row are shown in the second row (a2)−(d2),
where the arrows indicate the location of abnormalities. The enhanced
results of (a2)−(d2) obtained by using the MIFS algorithm are shown in
the third row (a3)−(d3), and the original mammograms superimposed
by the enhanced ROIs are shown in the fourth row (a4)−(d4).

faint. Nevertheless, through the MIFS method, the enhanced re-
sults are shown in Fig. 10(a3)−(d3). It can be found that both the
visual quality and contrast of the enhanced ROIs are much better
than that of the original ones. To synchronously show enhanced
abnormalities as well as normal tissues, the enhanced ROIs
are superimposed in the corresponding original mammograms,
as shown in Fig. 10(a4)−(d4), where the red areas consisting
of some pixels denote the detected masses and/or microcal-
cifications. These pixels are segmented via a global threshold
in enhanced ROIs and the segmentation results are refined by
postprocessing.

The detected masses and/or microcalcifications are assessed
by a female surgeon majoring in the mammary gland diseases.
She considers that the detected results are accurate reflections
of abnormal regions (e.g., lesions) in mammograms. Moreover,
these results are helpful to discern and diagnose breast diseases
or cancers.

In general, the MIFS algorithm is able to effectively improve
the contrast as well as visual quality of abnormalities in im-
ages. This suggests that the MIFS has potential for understand-
ing the lesions and identifying subtle findings by enhancing
fine details in mammograms, and then improving the disease
detection.
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Fig. 11. Effects of scaling parameters in (13). From left to right: (a) orig-
inal mammogram and (b)–(d) enhanced results under different scaling
factors.

F. Discussion

In this paper, a novel mammogram enhancement algorithm
(MIFS) was presented to effectively highlight the fine details in
mammograms. The MIFS scheme can derive different variants:
1) The user can adopt other thresholding methods to separate
the foreground and background areas (e.g., the adaptive thresh-
old or local threshold), in order to accommodate more complex
and specific requirements in real applications. 2) The member-
ship function can be derived from other types of intuitionistic
fuzzy generators, such as S and Z functions, exponential func-
tions, or logarithmic functions. 3) The fuzzy operation can be
rooted in other fuzzy filtering algorithms, for example, type-II
FSs, fuzzy HE, or fuzzy logical approaches. In addition, this
operation can be designed as a combination of two or more
various types of filters. 4) These are three coefficients involved
in the MIFS (If given some reasonable assumptions in specific
applications, those coefficients could be characterized by fewer
variables), which can simplify the MIFE design. Generally, the
MIFE scheme can be represented by two properties. One is that
different types of intuitionistic fuzzy generators or fuzzy filters
can be embedded into the MIFS scheme. The other property is
that the segmentation threshold, scaling coefficients and fusion
operators allow users to change the MIFS characteristics for the
application-specific requirements or reasonable assumptions.

The selection and determination of some parameters used in
analytical considerations should be rational. If a user makes a
proper assumption owing to practical design requirements, the
number of parameters will be reduced. For example, the sum
of scaling parameters a and b in (13) was set to 1. An original
mammogram with mass is shown in Fig. 11(a), where the black
curve denotes the location of the mass. It can be found that the
intensities of the mass are very similar to healthy breast tissues.
After the MIFS scheme with different scaling coefficients, the
enhanced results are shown in Fig. 11(b)–(d). It can be seen
that the clarity of mass gradually degrades in these enhanced
images. Compared with the original mammogram, there exist
different degrees of integrity in Fig. 11(b)–(d) regarding the
mammary marginal. The contrast (C) values of Fig. 10(a)–(d)
are 0.3051, 0.4039, 0.3585, and 0.3095, and the RC values are
1.9229, 6.1252, 4.3111, and 2.1179. In our experiments, the sum
of scaling coefficients is always set to 1. Fig. 11 suggests that low
a possibly produces not only high contrast of images but also
high RC of ROIs, as well as the ambiguous mammary marginal,

TABLE II
PATIENT DEMOGRAPHICS AND CHARACTERISTICS

Group Patientsa Age (y)b Imagesc Pathology

#1 2 46.5 4 Intraductal carcinoma
#2 3 61.3 6 Invasive breast carcinoma
#3 3 49.7 6 Invasive ductal carcinoma
#4 2 40.5 4 Adenofibroma
#5 2 57.0 4 Simple carcinoma
#6 2 65.0 4 Intraductal papilloma
#7 2 63.5 4 Papillary cystic neoplasm

aNumber of patients.
bData are averages.
cNumber of mammograms.

TABLE III
SUBJECTIVE COMPARISON OF ORIGINAL AND PROCESSED MAMMOGRAMS

OBTAINED BY USING DIFFERENT ALGORITHMS

Expert #1 #2 #3 #4 #5 Average

Original 2.5132 2.2646 3.2944 3.0949 3.1080 2.8550
ZIM 2.5208 2.7804 3.5408 3.6041 3.0542 3.1000
LEM 3.3768 2.5305 3.3557 2.8891 3.2056 3.0715
RUM 2.9978 1.6586 2.3994 1.9675 2.5819 2.3210
NUM 2.5232 2.2518 2.9341 2.7147 2.7509 2.6350
NILC 2.7402 2.5171 3.2683 3.1183 2.9766 2.9241
FBF 2.9431 2.2581 2.9943 2.6702 2.8895 2.7510
MIFS 4.0753 3.7185 3.8046 3.9095 3.7118 3.8439

TABLE IV
COMPARISON OF CONTRAST VALUES FOR EACH GROUP OF ORIGINAL AND
ENHANCED MAMMOGRAMS OBTAINED BY USING DIFFERENT ALGORITHMS

Group #1 #2 #3 #4 #5 #6 #7

Ori. 0.3003 0.3603 0.4916 0.4246 0.3998 0.4632 0.6152
ZIM 0.2761 0.3298 0.4424 0.3775 0.3669 0.4103 0.5575
LEM 0.3244 0.3867 0.5306 0.4669 0.4309 0.5067 0.6573
RUM 0.2466 0.2952 0.2957 0.2970 0.2443 0.3089 0.3597
NUM 0.3006 0.3605 0.4920 0.4246 0.3999 0.4638 0.6155
NILC 0.2499 0.2817 0.3942 0.3097 0.3408 0.3569 0.4089
FBF 0.3043 0.3657 0.4918 0.4246 0.3999 0.4632 0.6152
MIFS 0.4207 0.5011 0.6296 0.6335 0.5136 0.6144 0.7571

Note: Ori. denotes original mammograms. A higher value suggests the better enhancement
performance.

TABLE V
COMPARISON OF CONTRAST IMPROVEMENT VALUES FOR EACH GROUP OF

ORIGINAL AND ENHANCED IMAGES OBTAINED BY USING DIFFERENT
METHODS

Group #1 #2 #3 #4 #5 #6 #7

ZIM 0.9193 0.9152 0.8999 0.8891 0.9176 0.8857 0.9063
LEM 1.0804 1.0734 1.0794 1.0996 1.0777 1.0939 1.0684
RUM 0.8211 0.8193 0.6014 0.6994 0.6111 0.6669 0.5847
NUM 1.0010 1.0005 1.0007 1.0000 1.0002 1.0014 1.0005
NILC 0.8321 0.7818 0.8017 0.7293 0.8524 0.7704 0.6647
FBF 1.0134 1.0149 1.0004 1.000 1.0002 1.0001 1.0001
MIFS 1.4008 1.3908 1.2806 1.4921 1.2846 1.3264 1.2307
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TABLE VI
COMPARISON OF REGION CONTRAST VALUES FOR EACH GROUP OF

ORIGINAL AND ENHANCED MAMMOGRAMS OBTAINED BY USING DIVERSE
METHODS

Group #1 #2 #3 #4 #5 #6 #7

Ori. 1.5064 1.2163 2.4499 1.9050 1.8571 1.5491 1.5873
ZIM 2.1702 1.6328 3.0857 1.8455 1.9977 1.4161 1.6354
LEM 1.6722 1.2442 3.9166 1.9986 2.1677 2.0073 1.8766
RUM 1.7122 1.2505 3.4845 2.1498 1.9562 1.6176 1.0934
NUM 1.6590 1.2664 3.0408 1.9049 1.9632 1.6390 1.7018
NILC 2.5148 1.6935 4.6063 2.6522 2.3646 1.8988 1.8555
FBF 1.4829 1.0281 2.3906 1.3300 1.2977 1.1734 1.0121
MIFS 2.5803 1.9624 5.8578 3.7921 3.3986 3.6373 3.1642

TABLE VII
COMPARISON OF REGION CONTRAST IMPROVEMENT VALUES FOR EACH

GROUP OF ORIGINAL AND ENHANCED IMAGES OBTAINED
BY USING DIVERSE METHODS

Group #1 #2 #3 #4 #5 #6 #7

ZIM 1.4407 1.3425 1.2595 0.9688 1.0757 0.9141 1.0303
LEM 1.1101 1.0230 1.5987 1.0491 1.1673 1.2958 1.1823
RUM 1.1366 1.0282 1.4223 1.1285 1.0534 1.0442 0.6889
NUM 1.1013 1.0412 1.2412 0.9999 1.0572 1.0580 1.0721
NILC 1.6694 1.3923 1.8802 1.3922 1.2733 1.2257 1.1690
FBF 0.9844 0.8453 0.9758 0.6982 0.6988 0.7574 0.6376
MIFS 1.7130 1.6134 2.3911 1.9906 1.8301 2.3480 1.9935

and vice versa. High contrast is helpful in finding subtle masses
and/or microcalcifications, while distinct mammary marginal
can avoid introducing confusion in images. Hence, the choice of
scaling parameters is a trade-off between the contrast of ROIs
and the integrity of mammary marginal. Maybe, the original
mammogram superimposed by highlighted ROIs is useful in
this case.

Moreover, by using a threshold on an image basis, an ob-
ject with the same intensities might be a foreground object in
one mammogram but a background object in another image. In
this case, the detection accuracy and validity of abnormalities
will be impacted by the threshold. This suggests that the se-
lection /determining of threshold is important in the design of
MIFS scheme. Accordingly, the potential effect of thresholds
with respect to detection accuracy and validity on the MIFS de-
sign should be carefully considered. In many medical images,
Otsu technique does not perform well in segmentation of fore-
ground /background areas. However, we adopted 32 clinically
acquired images to test the iterative strategy, and the experimen-
tal results demonstrate that the iterative strategy (Section III-B)
can produce satisfactory results. Nevertheless, further research
on the automatic or semi-automatic selection of appropriate
threshold is very necessary, especially for subtle changes in
mammograms.

However, there are several limitations to our study: First, the
number of patients in our study is small, although the num-
ber of mammograms is relatively large compared with prior
studies. (For MOS test, the number of mammograms in [2] is
19 × 5 = 95, while that is 32 × 8 = 256 in this study.). Ac-
cordingly, the results presented are insufficient to demonstrate
the advantage of the proposed scheme in complex/particular

TABLE VIII
COMPARISON OF TIME EXPENDITURE (SECOND)

Image Fig. 6(a) Fig. 6(b) Fig. 6(c) Fig. 6(d)

Size 3920 × 1861 3944 × 1987 3836 × 1483 3872 × 1615
ZIM 20.93 22.96 16.49 18.07
LEM 1.94 2.35 1.80 1.58
RUM 2.43 2.76 2.05 2.10
NUM 3.68 4.36 3.01 3.05
NILC 1.03 1.18 0.74 0.84
FBF 98.04 129.80 113.37 76.77
MIFS 19.09 20.96 14.52 16.28

practical applications. However, this points out prospects in fu-
ture study. Also, the effectiveness of MIFS method should be
further explored (for example, threshold, membership function,
and hyperbolization operator), although the proposed MIFS
scheme can improve the contrast and visual quality of abnor-
malities in mammograms to some extent. Especially for more
subtle changes in images, more attention should be paid to those
issues. Late, the fast version of current algorithm should be in-
vestigated since the process time must be reasonably short in
practical applications. Considering the comparability of the sim-
ulation codes, we make a comparison in Table VIII with respect
to process time among the ZIM, LEM, RUM, NUM, NILC,
FBF, and MIFS methods. The conditions for our comparison
experiments are as follows: PC with Intel Xeon 2.40 GHz CPU,
16G RAM, Windows 7, and MATLAB 2013a. As seen from
Table VIII, the MIFS has relatively high process time. Conse-
quently, the fast MIFS algorithm is urgent in the future research.

V. CONCLUSION

This paper proposes a novel IFS-based scheme called MIFS
for mammogram enhancement. The proposed scheme initially
separates a mammogram into the foreground/background areas,
subsequently followed by different intuitionistic fuzzification,
hyperbolization, and defuzzification operations implemented
on each area and then achieves an enhanced result through
nonlinear fusion operators. The MIFS scheme provides more
robustness and flexibility, in order to accommodate more spe-
cific/complex needs in applications. In comparison to baseline
methods, such as the ZIM, LEM, RUM, NUM, NILC, and FBF,
the MIFS has better performance for improving both the contrast
and visual quality of abnormalities in mammograms (such as the
masses and/or microcalcifications) and makes these particular
ROIs more recognizable. Experimental results indicate that the
MIFS has much potential for detecting and diagnosing breast
diseases in early stages. In the future, we will keep improving
the current method from diverse directions, for example, the fast
version, the threshold in the division of foreground/background
area, and the flexibility in cases with heavy interference.
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