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A Multiscale Fuzzy Metric for Detecting
Small Infrared Targets Against Chaotic
Cloudy/Sea-Sky Backgrounds

He Deng, Xianping Sun, and Xin Zhou

Abstract—In a low signal-to-clutter ratio (SCR) small-infrared-
target image with chaotic cloudy-/sea-sky background, the target
has very similar thermal intensities to the background (e.g., edges
of clouds). In such case, how to accurately detect small targets is
crucial in infrared search and tracking applications. Conventional
methods based on the local difference/mutation potentially result
in high miss and/or false alarm rates. Here, we propose an effec-
tive method for detecting small infrared targets embedded in
complex backgrounds through a multiscale fuzzy metric that
measures the certainty of targets in images. Accordingly, the
detection task is formulated as a fuzzy measure issue. The pre-
sented metric is able to eliminate substantial background clutters
and noise. Especially, it significantly improves SCR values of the
image. Subsequently, a simple and adaptive threshold is used
to segment target. Extensive clipped and real data experiments
demonstrate that the proposed algorithm not only works more
robustly for different target sizes, SCR values, target and/or
background types, but also has better performance regarding
detection accuracy, when compared with traditional baseline
methods. Moreover, the mathematical proofs are provided for
understanding the proposed detection method.

Index Terms—Infrared image, multiscale fuzzy metric (MFM),
small target detection.

I. INTRODUCTION

MALL infrared target detection is crucial in infrared

search and tracking (IRST) systems, because the perfor-
mance of whole IRST depends upon the accuracy of detection
results [1], [2]. Different to the general object or saliency
detection tasks (such as visible light images), the major chal-
lenge/difficulty of small target detection is short of enough
prior knowledge about the target (such as, size, shape, tex-
ture, and velocity) due to the long imaging distance. A small
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target usually possesses several pixels (less than 0.15% of
the image size) [3] and its brightness possibly changes from
dim to bright [1]. On the other hand, a small target is gener-
ally submerged in heavy noise and strong background clutters
(e.g., cloudy and/or sea clutters) with low signal-to-clutter
ratio (SCR). Although many efforts have been concentrated
on this issue over the last two decades [4]-[11], it is still
a difficulty problem to tackle.

Due to the long distance between the imaging sensor and the
target, the spatial-temporal information, background features
or the relation between the background and target is signif-
icant for the target detection. Given this, existing techniques
are roughly classified into the track-before-detect (TBD) and
detect-before-track (DBT) methods [4], [5]. TBD algorithms
usually process several frames to estimate targets, while need
prior information. For example, 3-D matched (directional)
filtering [6] could detect moving small targets with a con-
stant velocity, which requires some knowledge about the target
shape and velocity. 3-D double directional filtering [7] is effec-
tive to detect weak targets, but demands the information about
the maximum target velocity. In addition, the methods based
on the modified partial differential equation [8] or support
vector machines [9] are used to suppress background clut-
ters in a single image, and then eliminate false alarms using
multiframe accumulation or autocorrelation.

When compared to TBD methods, DBT algorithms are more
powerful because of lower computation complexity, and fewer
requirements of assumptions and prior knowledge. In gen-
eral, there are two necessary assumptions in most of DBT
methods: one is that the background has correlation in spa-
tial domain as well as stability in time domain. It generally
occupies the low frequency portion of an image in frequency
domain. The other assumption is that a small target is unre-
lated to the background in spatial domain, and it dominates the
high frequency portion of the image. Some techniques based
on these assumptions are utilized to eliminate background
clutters. The finite or infinite impulse response filtering and
space-time maximum likelihood algorithms [11] can suppress
backgrounds with the assumption of short-time stationarity.
Top hat [12] and median filtering are widely used to reduce
clutters. Howbeit, these methods would cause high false alarms
when SCR is low [13], [14]. Moreover, classification-based
methods are able to remove clutter points [15], for example
the manifold learning [16], nearest neighbor classifier [17] or
convolutional neural network [18], [19]. There are still many
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other techniques, including methods based on the tri-feature
detector [20], or biological vision [21].

Recently, there arises a novel trend toward the fact that
the emergence of small target leads to significant changes
of local rather than global texture for promoting detection
performance [22]-[25]. Local difference- or mutation-based
algorithms have displayed great potential in diverse small tar-
get detection tasks. None the less, such algorithm requires
to be ameliorated. For example, the sparse representation
scheme has been exploited to characterize the local difference
between the small target and neighboring backgrounds [22],
but is unable to characterize the background very well [13].
Wang et al. [23] put forward an average gray absolute dif-
ference maximum map (AGADM) for target detection, but it
roughly characterizes the background and possibly produces
high false alarms [14]. Chen et al. [3] proposed a local con-
trast map (LCM) to “pop out” small targets and ‘“neglect”
background areas as much as possible. Howbeit, this algo-
rithm assumes that the target is bright, which is not suitable
for detecting dark targets. To solve this problem, we explored
a local difference measure [24] to measure local mutation and
then detect dark and bright targets. However, this method is
time-consuming to determine the size of regional window. The
above research shows that measuring local difference/mutation
between the small target and neighboring background is vital
in small infrared target detection.

Noticed that the ambiguity and uncertainty are unavoid-
ably arisen during image acquisition and image transmission,
a valid way representing such image should utilize human
knowledge expressed heuristically. Besides, the description
of object in an image has fuzziness. Owing to the ability
for tackling imperfect data derived from the ambiguity and
vagueness [26]-[28], fuzzy sets are widely applied in various
computer vision and machine learning fields, including image
segmentation [29], [30], image enhancement [31], and object
tracking [26]. Accordingly, fuzzy sets can guide the design of
a new metric, which could measure the certainty due to the
emergence of a small target.

With these considerations in mind, a novel local muta-
tion or difference metric (called as multiscale fuzzy metric,
MFM) is designed from the perspective of fuzzy sets and
local difference/mutation models in this paper, which focuses
on how to pop out small targets and “suppress” backgrounds.
Experimental results verify that the proposed method is effec-
tive regarding detection accuracy. Especially, it displays a dis-
tinct superiority over several widely used baseline techniques
in terms of SCR and background suppression factor (BSF).

The contributions of this paper can be summarized as
follows.

1) A novel local difference/mutation measure named MFM
is proposed, which is able to measure the certainty
of small targets in infrared images under complicate
background clutters/noise. As a result, the target detec-
tion task is transformed into a fuzzy measure issue.
The MFM is capable to well pop out targets, while
neglect backgrounds at the same time. In particular,
it significantly improves SCR and BSF values of the
image.
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2) A new MFM-based detection algorithm is designed.
By applying such method on extensive clipped and
real small target images against diverse complex back-
grounds (the number of clipped images is 105, and
that of real images is 1345), it demonstrates that the
designed method is simple and effective regarding the
detection accuracy. Moreover, the theoretical analyses of
MFM-based scheme are supplemented. This gives useful
foundation for comprehending the designed small-target
detection method and instructing future developments.
The technique presented recently is able to guarantee
to robustly and efficiently tackle low SCR images with
different targets types and backgrounds.

The organization of the remainder of this paper is as follows.
In Section II, we explain the MFM-based small target detection
method in detail. In Section III, we present theoretical analyses
of MFM. In Section IV, we give extensive experimental results
and discussions, and several factors of the proposed method
are discussed in Section V. The conclusions and perspectives
are given in Section VI.

II. SMALL TARGET DETECTION BASED
ON Fuzzy METRIC

In this section, we introduce a novel detection scheme. This
scheme exploits a fuzzy metric to suppress background clutters
and enhance targets, and then uses a simple threshold to detect
targets. It is good at improving SCR values of the image.

A. Fuzzy Metric

Suppose that ® is a finite set, a fuzzy set A = {ug|0 € O}
is represented by a membership function/degree 19, where 6
is a generic element of ®. The wp associates a real number
within an interval [0,1] with each point in ®. The function
is a measure of belongingness or membership degree of an
element in ® [32].

An image can be considered as a cluster of fuzzy singletons
indicating the membership value of each pixel point regarding
a predefined image property (such as brightness or homogene-
ity) for specific applications. In a small target image, the target
has signature of discontinuity with its neighboring background
area [3]. For representing that discontinuity, the membership
degree/function of an image with L gray levels is defined as

o = (e, y) = 1= [exp(1 = [ = 3]) = 1]/expt) = 1)
where x =x/(L—1),y=y/(L—1) (D)

where x and y denote gray values at the current and neigh-
boring points. Then, an image is converted into a fuzzy set
through the function wg : [0, L — 1] x [0,L — 1] — [0, 1].

A function is a metric/distance function that defines a met-
ric/ distance between each pair of elements of a set, if it sat-
isfies the following conditions [33]: 1) D(x,y) > O[D(x,y) =
0 iff x = y] and 2) D(x,y) = D(y, x); 3) D(y,2) < D(x,y) +
D(x, z), where x, y, and z are arbitrary elements of the set.
Hence, the membership function defined using (1) satisfies the
conditions for the distance function, as shown in the following
proposition.
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Proposition 1: Suppose that an image is with L gray levels,
and x, y, and z are gray values at different points (viz., x, y, z €
[0, L—1]), then (1) satisfies: 1) 0 < u(x,y) < 1;2) p(x,y) =
0 iff x = y; 3) pn(x,y) = u(y,x); and 4) wu(y,2) < px,y) +
m(x, z).

Proof:

1) Because x,y € [0, L — 1], x =x/(L—1) € [0,1],y
y/(L—1) € [0,1], and 0 < 1 — |¥* — 7|
Thus, 0 < [exp(l — [¥* — 3?]) — 1]/(exp(1) — 1)
Accordingly, 0 < u(x,y) <1 for any x and y.

2) Whenx =y, u(x,y) = 1—(exp(1)—1)/(exp(1)—1) = 0.

3) u(x,y) = pu@,x.

4) Lett; = | =32, to = |¥*—7?|, 13 = |}*—7°|, where 7 =
z/(L—1),thus 0 <t <1,0<p <land 0 <1 <1.
Now, we consider a function g(t1, ) on [0, 1] x [0, 1],
which is defined as follows:

< I
< 1.

gti,n) =1
exp(l — (t1 + 1)) —exp(l — 1) —exp(l — ) + 1
+ .
exp(l) — 1
Then
dg(t1, )  exp(l — 1) —exp(l — (11 + 1))
an exp(1) — 1

=exp(1—t1)(1_ 1 )>O

exp() — 1\ exp(2) ) =

ag(ty, r) _ exp(l — ) —exp(1 — (11 + 1))
an exp(1) — 1

_exp(l—tz) 1 — 1 >0
o exp(l) — 1 exp(t1) ) —

Accordingly, the function g(#1, t2) is monotonically increas-
ing along both #; and #, directions. As a result, when (¢, ) =
(0, 0), g(t1, 1) achieves the minimum value g(0, 0) = 0. This
suggests that g(t1, t2) is no less than O for any #; and #; in an
interval [0,1].

Because
P2 =|(@-7)+ @ -) < -7+ -7
B <n+n.

Thus, 1+[(exp(1—13)—exp(1—11)—exp(1—12)+1)/(exp(1)—
D] = g(t1, 1) > 0, viz.,
B exp(l — ) — lj|

[1 _exp(l—1) — l:| N |:1
exp(l) — 1 exp(l) — 1

- [1 _exp(l = (11 + 1)) — 1].

- exp(l) — 1
Consequently, (v, z2) < u(x,y) + p(x, 2). |

Proposition 1 suggests that a function using (1) is a fuzzy

metric function. However, a neighborhood around current pixel
x consists of many neighboring pixels, which arises the variety
of membership values according to the selection of neighbor-
ing pixels. An alternative strategy may substitute some proper
rank statistics of neighborhood for the variable y in (1), such
as the min, max, mean, median, or others. In this case, (1) is
a membership degree that measures the difference of a pixel to
an image block, or the metric/distance (or certainty) between
the pixel and its neighborhood.

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 5, MAY 2019

B. Multiscale Fuzzy Metric

The fuzzy metric (1) can measure the distance/discontinuity
between a current point and its neighboring one. However,
this metric is generally sensitive to noise. An effective arti-
fice is to obtain more information from the neighborhood of
the current pixel. A small target often occupies several pix-
els in an infrared image [23], and the target region is viewed
as a homogeneous and compact area [2], [3], [14]. Thus, we
substitute the average gray value of current region for the
variable x in (1), and replace the variable y in (1) with
the average gray value of surrounding region. This is also
derived from the fact that the discontinuity between the target
and neighboring background is essentially involved determin-
ing the property of average gray difference based on the
neighboring pixels [23]. Accordingly, (1) turns into a func-
tion u : B x; xP*xy = {(x,y)|x € Dx*;,y € Dxy}, and the
exponential term is transformed from the 1 — Ix2 — y?| into
the 1 — |mean2(D>x<1)—mean2(D>x<2)|, where D*; and b*, are
the current and surrounding regions.

Nevertheless, it arouses another important issue (viz., how
to determine the size of target region or window/patch) since
the target size constantly changes along with the change of
imaging distance, environments, target types, and so on. In this
case, the window or patch size should change as the target size
changes. However, the prior knowledge about the target size or
imaging distance is scarcely acquired in applications [1]-[3].
To tackle such case, a multiscale model is adopted to smartly
manipulate multiple target scales [3], [14]. Thus, an MFM is
proposed to represent the distance/metric between the target
region and surrounding background clutters.

Given a pixel point (p, ¢g) in an image, its kth neighborhood
is defined as follows:

Q={(ab)llp—al <kand |g—bl <k}, k=12,....K
2

where K is a positive integer that defines the maximum size of
window. Then, the average gray value of the kth neighborhood
Q. is defined as

1

Adp.q) = 4o > s 3)

(s,0) e

where #Qy is the number of pixels contained in €2, and f(s, f)
is the gray value at the point (s, 7).

In this way, a fuzzy metric between two neighboring regions
is defined as the following formula:

w(AnA)) =1 - [exp(] — |a2 —A}D - l]/(exp(l) —1)
where A; = A;/(L— 1), Aj = Aj/(L—1),i,j € {1,2,...,K}.
4)

Similar to (1), (4) satisfies the conditions for distance
functions (see Proposition 2).

Proposition 2: Assume that an image is with L gray levels,
and A;, A;, and Ay are average gray values of neighborhoods
centered at the point (p, ¢g), then a fuzzy metric using (4)
satisfies: 1) 0 < w(A;,A)) < 1; 2) u(A;,A) = 0iff A; =
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Aj; 3) n(Ai, Aj) = (A, Ap); and 4) w(A;, Ay) < w(A;, Aj) +

W(Aj, Ak).
Proof: The proof of Proposition 2 is analogy to that of
Proposition 1. |

Different to (1) and (4) measures a distance between two
neighboring regions centered at the same point. When the
index k changes from 1 to K, we can achieve a fuzzy distance
matrix

0 (A1, Ar) (AL, Ag)
A= “(A_%-Al) 0 N(A.Z-ylAK) 5)
WAk, A1)  wlAg,Ar) - 0

Matrix A is a symmetric matrix, where every element denotes
the distance between the current region and neighboring one.
A fuzzy metric with diverse scales is to meet potential changes
of target size owing to the possible change of imaging distance.
Moreover, a small target region in an image has con-
spicuous discontinuity with its surrounding background
regions [2], [3], [23]. After that, the most dissimilar point
according to the fuzzy metric can be considered as a target
point. Then, MFM centered at the point (p, g) is defined as

v(p, q) = max{A, 0}. (6)

For each point in a given scale [viz., K in (2)], its MFM is
acquired according to (2)-(6). When the sliding window moves
in an image from left to right and from top to down, the MFM
map (MFMM) will be achieved. Each element represents the
maximum discontinuity between the current region and the
surrounding neighborhoods.

C. MFMM-Based Small Target Detection

As mentioned before, a small target is discontinuous with its
neighboring background area [3], [23]. According to proper-
ties of the metric function, the background region in an image
may result in low MFM values, while the target region may
produce high one (see Proposition 3). In this case, the MFMM
is able to enlarge the discontinuity between the target and its
neighboring areas (see Proposition 4), and effectively enhance
small target as well as suppress complex background clutters
and noise (see Propositions 5 and 6). Therefore, we believe
that, if an MFMM is achieved, the local region whose MFM is
greater than a given threshold in some scale may be a position
where target appears.

We know that fewer residues of clutters and noise deter-
mine lower false alarm rates under the same probability of
detection [1]. In order to eliminate clutters and noise resid-
ual as much as possible, the final filtered result is achieved
through an iterative filtering procedure (see Fig. 1). Since the
average local entropy (ALE) is utilized to quantify the textural
information reduction along with iterations [34], we adopt this
concept to determine the number of MFMM iterations. For an
image with size of M x N, the ALE is defined as

M N
1
ALE = ——— 2 X;LE(X, ¥) (7)
x=1y=
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\ 2 I—M, [—I+1 No,
Input MFM ALE 4 Yes| Output Filtered
Image (1) Map (M) Computation Result (M)
Fig. 1. Flowchart of the iterative filtering procedure.

I Infrared Image Sensor : { Multiscale Fuzzy Metric Map : I Adaptive Threshold : |Targel Segmemationl

| I [

T

Threshold

Detected Target

§ Final Metric Map |

Fig. 2. Flowchart of the proposed small target detection scheme.

where LE(x, y) denotes the entropy of a 9 x9 window centered
at the point (x, y). After that, we set a stopping criterion as

HALE’ H <1 (8)

where ALE' denotes the ALE after / iterations, and ||-|| denotes
the L, norm operator.

After achieving a filtered result, a simple and adaptive global
threshold is utilized to segment targets. The adaptive threshold
is defined as

T=o Epnx+p-m, sta+p=1 9)
where Enax and m; denotes the maximum and average val-
ues of the filtered result, @ and 8 are positive constants. The
constraint of coefficients (the sum is set as 1) is to ensure
the rationality of threshold (viz., the threshold 7 is within the
interval [m;, Emax]), avoiding producing an invalid threshold.
As previously stated, the most dissimilar point can possibly
be target point, as guided by MFM. Then we segment a pixel
at the point (i, j) as the target pixel if the point with value
> T, otherwise it is a background pixel. Since a small target
region has higher MFM value than its neighboring background
areas, irrespective of the bright or dark target, (9) will give an
appropriate threshold to detect the target once the « and S are
selected. In our experiments, the alpha is chosen in an interval
[0.4,0.6], and the beta is 1-alpha.

To intuitively display the proposed MFM-based small tar-
get detection algorithm, the whole detection scheme is given
in Fig. 2. In general, the user can manually and experimentally
pick the maximum window size [viz., (2K 4+ 1) x 2K + 1)]
to calculate the MFM in (6), « and B to compute the thresh-
old in (9), as well as stopping criterion for practical design
requirements (see Section V for details).

III. ALGORITHM ANALYSIS

Some theoretical analyses of the proposed detection method
are discussed in this section. This can supply useful
foundation for understanding the method and guiding future
developments.
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A. Algorithm Properties

From the definition, it can be seen that the fuzzy metric
using (1) measures the fuzzy distance between the current
point and its neighboring ones. To explain the metric as
reasonable, we establish the following proposition.

Proposition 3: Assume that w(x,y) is a fuzzy metric
using (1), then w(x, y) satisfies (where x, y, and z are the gray
values at different points, and the image has L gray levels):

D ux,y)=Liffx=L—-1,y=0,orx=0,y=L—1;

2) for all x,y,z € [0,L—1],if x <y <z then u(x,y) <
p(x, z), and [(y, 2) < p(x, 2);

3) f xp <y1 <y2 <x2 €[0,L—1], then u(yr,y2) <
m(xy, x2).

Proof:

1) Whenx =L—-1,y=0,orx =0,y=L—1,x =
1,y=0o0rx=0,y=1, then u(x,y) =1 — (exp(0) —
1)/(exp(l) — 1) = 1. On the contrary, if u(x,y) = 1,
then |¥> — 3| = 1. Because X € [0, 1], % € [0, 1], then
X=1,y=0o0rx =0,y = 1. This suggests that x =
L—1,y=0,orx=0,y=L—1.

2) Let t = ¥ — 7| € [0, 1], thus (1) becomes u(f) =
1 — (exp(1 — 1) — 1)/(exp(l) — 1). Then (Qu(t)/dt) =
(exp(l —1)/[exp(l) — 1]) > 0. Consequently, the func-
tion p(¢) is monotonic increasing. If x < y < z, then
¥ — 32| < |¥2 — 72|, |7* —7?| < |¥* —Z?|. This indicates
that pu(x,y) < u(x, z) and u(y, z) and p(x, z).

3) Suppose that #; = |5¢% — 56%|, Hh = |5)% - )7%| (where
X1 =x1/(L=1), X2 = x2/(L—=1), y1 = y1/(L—=1),
Yo = w/(L—1)), then n < t; € [0, 1]. Because
w(t) is an increasing function proved in the above,
thus p(t2) < wu(r1). Accordingly, pu(yr, y2) < p(xy, x2)
is valid. |

According to Propositions 1 and 3, the fuzzy metric
is a local function. Proposition 3 indicates that the more
gray difference between two points in an image owns the
larger distance. This is helpful for detecting small tar-
gets because target pixels are significantly nonanalogous to
its surrounding background ones that have similar imaging
properties.

It is easy to prove that MFM has the similar conclusions
of Proposition 3. In this case, the MFM in a target region is
higher than that in a background area. Accordingly, this metric
can be used to measure the certainty of small target in infrared
images.

B. Detection Ability Analysis

In a small target image with low contrast, the distribu-
tion of target highly resembles that of background, which
may lead to minute discrimination (such as intensity differ-
ence) between the target and neighboring background regions.
However, after fuzzy metric (4), the difference is expanded
(see Proposition 4).

Proposition 4: The fuzzy metric (4) can broaden the orig-
inal intensity discontinuity between any two neighboring
regions.

Proof: Suppose that 2; and £2; denote any two neighbor-
ing regions centered at the same point (the respective average
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gray values are C; and Cj, and the image is normalized to
[0,1] prior), then the original intensity difference is |C; — Cjl,
denoted as t. Through the metric (4), the difference becomes
1 —[exp(l—1)—1]/(exp(l) —1). Now, we consider a function
f(@®) =1—[exp(l —1) —1]/(exp(1) — 1) — ¢ on [0,1]. Then

of () _exp(l =1 a2 (r)  —exp(l —1) <0. (10
ot exp(H)—1 7 92 exp()—1

Hence, the function f(#) has a minimum at 1 —log(exp(1) —1),
and the minimum is (exp(1l) —2)/(exp(1) — 1) +log(exp(l) —
1) &~ 0.1233. This indicates that the function f(¢) is always
larger than 0. Thus, the discontinuity using (4) is greater than
the original. |

Assume that Cj, is the average intensity of a neighboring
area (including m pixels) around a target region (containing n
pixels, n < m, and the average intensity is C;), the original
discontinuity between the target and neighboring regions is
m/(m—n)-|Cp — C;|. Because the original intensity difference
(viz., |Cp—Cy| ) could be enlarged through the fuzzy metric (4)
(see Proposition 4), the difference between the target area and
neighboring background ones is expanded when adopted the
metric (4). Accordingly, the MFM is able to broaden the differ-
ence between the target and neighboring background regions.
After multiple iterations, such difference is gradually esca-
lated. This significantly upraises the separability of target from
background clutters and noise.

Furthermore, Propositions 5 and 6 indicate that the MFM
can produce less clutters and noise residual. Since false alarm
rates under the same probability of detection are direct pro-
portional to the complexity of clutters and noise residual, the
MFMM can result in low false alarm rates.

Proposition 5: Suppose that a small target image owns L
gray levels and (po, qo) is a current point in the background,
then its MFM " (po, qo) ~ 0.

Proof: Because the background is related to its neigh-
boring areas in spatial domain, the difference between the
current region and neighboring ones is trivial. Then the
formula is warrantable

Ab(po, q0) = A%, (po, qo), where k=1,2,...,K—1 (1)

where AZ is the average gray value of the kth neighborhood.
According to Proposition 2, we can acquire

,u,”(A’-’ A’.’>§0,i,je{1,2,...,l(} (12)

i
where u” (Af.’,Ajl?) is the fuzzy metric (4) in the background
areas. Then, the fuzzy distance matrix is approximately con-
sidered as a null matrix. After that, the MFM centered at the
point (pg, go) is near to zero, viz., vb(p(), q0) ~ 0. |

Proposition 6: Assume that (ip, jo) is the center of a tar-
get in an infrared image, whose MFM is V/(ip,jo), then
0 <V'(io, jo) < 1.

Proof: A small target usually concentrates in a small, com-
pact, and homogeneous region [3], [14]. Then for a bright

target, it can be found that
A;c(io,jo) > A/tc“(l'o,jo), where k=1,2,...,K—1 (13)

where Aj is the average gray value of the kth neighborhood.
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According to Proposition 3, we can gain
Vi,j,ke{l,2,...,K}, andi <j<k
= (AL A7) = (AL AL, (AL AL) < (AL AY) (14)

where u’(Af,A/’.), w'(Al, A}) and M’(A;,A,’() are fuzzy metrics
using (4). In this way, the MFM centered at the point (ig, jo) is

V(. jo) = ' (A}, A%) € (0. 1].

Accordingly, MFM represents the maximum difference among
neighboring areas around the small target.

For a dark small target, if the current region only involves
the target, (13)—(15) are tenable according to Proposition 3. On
the other hand, if the current region includes both the target
and neighboring background, we can find that

15)

Al (o, jo) < Al Gojo)m=M~+1,....K—1

and Af(io. jo) < Ak (io.jo).i € {1.2,....K} (16)

where M denotes the maximum scale of the target. In this
case, Al (x0, y0) < A},(x0,y0) < Ak (x0,y0), | <p < K. Then,
the MFM is

¥Gio.jo) = ' (A7, A ) € (0. 11, (17

|
When compared to the original intensity difference in
a small infrared target image, Propositions 4-6 suggest that
the MFM is more significant in target regions. If the maximum
window size in (2) is set appropriately, the MFM value will
be close to 1 in target regions. Moreover, Propositions 5 and 6
indicate that the MFM in a target region is higher than that
in a background one. This reveals twofold roles of MFM: the
target of interest is enhanced, while complicated background
clutters and noise are adaptively suppressed. Accordingly, the
proposed MFM-based small target detection algorithm is able
to work well for images against diverse backgrounds.

C. Computational Complexity

The complexity of our method is briefly discussed. As
shown in Fig. 2, it is not hard to find that the computational
time of the proposed algorithm mainly consists of three parts:
1) the MFMM operation; 2) the ALE computation; and 3) the
target segmentation.

The computation complexity of MFMM operation primarily
depends on the fuzzy metric computation (4) across all pixels
in an image. For each pixel point, the MFM computation (5)
needs O(K22") cost (viz., the worst-case time complexity of
algorithm, which is defined as the maximum amount of time
taken on the input size n), where K is the maximum size
of sliding window (2). Accordingly, the entire computation
complexity of this step is around O(NrcK?2"), where r and ¢
are the row and column numbers of the original image, and N
is the iteration number of the MFMM algorithm, respectively.

For ALE computation, we necessitate implementing the
local entropy operator across all pixels in the image as well.
For each pixel, the local entropy operator can be carried
out in O(hlog(n)) time, where h is the neighborhood size.
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Consequently, the total computation complexity of this step
is around O(Nrchlog(n)).

For target segmentation, a simple threshold is used. For each
pixel, only a simple comparison operator is performed. Thus,
the entire cost of this step is around O(rc).

According to the above analysis, the entire computational
complexity of the proposed MFM-based algorithm is around
O(NrcK?2" + Nrchlog(n) + rc). The real runtime of the
proposed method is provided in the supplementary materials.

IV. EXPERIMENTAL RESULTS

In this section, we first introduce some evaluation indexes
and baseline algorithms for comparison. After that, we perform
experiments on small target images (against different complex
backgrounds) clipped from lots of published papers to evaluate
the performance of the proposed algorithm. Finally, we use
real data to further test the proposed method.

A. Indexes and Baseline Methods

The probability of detection (Pd) and the false alarm rate
(Fa) are the most popular indexes for evaluating the tar-
get detection performance [1]. Pd denotes the probability of
detected targets in multiframe images where targets truly exist,
while Fa is the rate of detected targets in multiframe images
where targets do not exist. Pd and Fa are defined as

Pd = Ny/N;, Fa = N;/N (18)

where Ny, Ny, Ny, and N denote the number of true detections,
the number of actual targets, the number of false detections,
and the number of images, respectively. A method with good
detection performance means it owns both high Pd and low
Fa values.

SCR is widely used to portray the difficulty level of tar-
get detection [1]. If an image has several targets, the average
SCR (aSCR) is utilized in this section. The aSCR is

M
aSCR = 1/M - ) " SCR;, SCR; =
j=1

19)

ol 6] /o]

where M is the number of targets, SCR; is the SCR value of
the jth target, 6/ is the average gray value of the jth target, &)
and a‘é are the average and standard deviation of gray values
in the neighboring area around the jth target, respectively.

Besides SCR/aSCR, the BSF is usually used to represent
the residual degree of background clutters and noise [24]. The
BSF is defined as

BSF = 07/00 (20)

where o7 and o denote the standard deviations of gray values
in the original and filtered images. Generally speaking, the
higher SCR/aSCR and BSF values of an image are, the easier
targets can be detected.

The fuzzy metric is similar to some local differ-
ence/mutation descriptors that represent local mutation due
to the appearance of small targets. Consequently, we select
the LCM [3], LMWIE [25], and AGADM [23] as three
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baseline methods. Moreover, max-mean (MME), and max-
median (MDM) filtering methods [35] are also adopted as
baseline methods since they are well studied and widely used
for assessing new methods [1], [24].

From the perspective of imaging, a small target defined by
Society of Photo-Optical Instrumentation Engineers has a total
spatial extent of less than 80 pixels [3]. Hence, for the pro-
posed method, we have K = 4, while the number of iterations
is decided dynamically according to the iterative strategy (see
Fig. 1). The effects of parameters (including the window size
and stopping criterion) are discussed in detail in Section V. All
experiments are carried out using MATLAB on an Intel Xeon
CPU E5-2407, 2.40 GHz machine with 8 GB RAM.

B. Clipped Images

Background suppression is a critical issue in detecting small
targets [13]. Less clutters and noise residual is indispensable
to maintain lower Fa values under the invariable Pd [1]. Hence,
if the proposed algorithm can eliminate more background
clutters, the target will be detected more easily.

Massive test small target images are clipped from published
papers through a screenshot tool (The clipped images are color
png files), then the images are transformed into the gray format
(the gray range is [0, 255]). In the test clipped images, the tar-
get size possibly changes from 2 x 2 to more than 9 x 9 pixels
and its brightness could vary from dim to bright due to dif-
ferent target types, environments, and imaging distances (the
representative clipped images are shown in Figs. 3 and 4).
The targets usually submerge in different complicate back-
grounds, for example the images with noisy bright spots or
strong sea/cloudy clutters (see Figs. 3 and 4). In addition, the
deficiencies of dots per inch, screen/scanning resolution, along
with other unknowns potentially produce serious disturbances
on those images. This further increases difficulty to tackle such
situation.

The number of clipped images is 105. In view of back-
ground types, the backgrounds of test clipped images could
be simply divided into the cloudy-sky, sea-clutter, terrain-sky,
and sea-sky backgrounds. According to the number of small
targets, the test images are roughly classified into the single-
and multitarget images. On account of the target types, the
targets embedded in clipped images are categorized into the
cloudy-sky targets (e.g., missile or plane), sea targets (e.g.,
ship or torpedo), and terrain targets (e.g., panzer or vehicle).

Four representative clipped single-target images are shown
in Fig. 3(al)—(d1), where the blue squares indicate the loca-
tion of targets. It can be found that the images have low
SCR values, low spatial resolution, noisy bright spots, heavy
noise, and/or strong cloudy or sea clutters, which lead to great
difficulties or challenges in the detection of those targets.
Nevertheless, after the proposed method, such heavy distur-
bances are substantially eliminated, and the targets are well
enhanced [as shown in Fig. 3(a2)—(d2)]. In this way, those
targets are readily detected.

Four representative clipped multitarget images against sea-
sky, cloudy-sky, and terrain-sky backgrounds are displayed in
Fig. 4(al)—(d1), where the white squares indicate the location
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of targets and the number of targets is 2. It can be found
that the images have very low contrast and the targets have
very similar distribution to the background. In this case, the
target detection is a difficult issue to tackle. Since the pro-
posed method focuses on how to pop out (or enhance) small
targets and neglect (or suppress) backgrounds as much as
possible, the respective filtered results of Fig. 4(al)-(d1) are
shown in Fig. 4(a2)—(d2). Similar to Fig. 3, the substantial
interference factors (such as clutters and/or noise) are effec-
tively eliminated, which ensures the stability and robustness of
the proposed algorithm regarding the detection performance.
The conclusion derived from Figs. 3 and 4 is that the pro-
posed method can work stably for different backgrounds, target
types, target sizes, and target numbers. The filtered results
of representative single- and multitarget images via baseline
methods are not given because of space limitation. Please see
the supplementary materials for comparisons.

Two indexes (viz., aSCR and BSF) are suitable to represent
the filter performance of various methods and are used here for
comparison. For each index, a higher score indicates the better
performance. As for the representative clipped images, Table I
lists aSCR values of the original and filtered images obtained
using the baseline and proposed methods. It can be seen that
the proposed algorithm can significantly improve aSCR val-
ues of image against different complex backgrounds. Table I
indicates that the proposed method is superior to the baseline
methods (such as the LCM, LMWIE, AGADM, MME, and
MED) with regard to the improvement of aSCR values. The
BSF values of filtered results through different methods are
shown in Table II. We can find that the proposed detection
method also shows the superiority over baseline methods in
term of BSF comparisons.

Against complex infrared background, a small target usually
submerges in clutters/noise. However, the target is dissimilar
to surrounding clutters/noise in spatial domain. This dissim-
ilarity is the basis of our method that aims to measure the
certainty of small targets in images. It can be found from
Proposition 4 that the designed fuzzy metric can broaden
the difference between the target and neighboring background
regions. Accordingly, the separation of targets from complex
clutters and noise is easy to be resolved. Propositions 5 and
6 demonstrate clearly that the metric in background area is
less than that in target region. This indicates that the proposed
method can availably enhance target by effectively suppressing
clutters and noise. Propositions 4—6 are able to explain theo-
retically the robustness of the proposed detection method. The
evidences from Figs. 3 and 4, and Tables I and II authenticate
that the proposed MFMM-based technique enable the prob-
lem of target detection in the cases of heavy disturbances (for
example, noisy bright spots, heavy noise, low contrast, and/or
strong cloud/sea clutters) to be stably handled. In addition,
more experiments of test clipped images with great inter-
ferences of human-made artifacts are supplemented in the
supplementary materials.

In accordance with background types, the test clipped
images are separated into four groups and every group owns
analogous background types (viz., the cloudy-sky, sea-clutter,
terrain-sky, and sea-sky background), denoted as Group 1 to 4.
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Fig. 3. Representative clipped single-target images against diverse back-
grounds and filtered results obtained using the proposed method. Top row,
from left to right, are the (al) original dim-target image with low SCR and
heavy noisy sea clutters, (b1) dim-bright-target image with noisy bright spots
and strong cloudy clutters, (cl) bright-target image with low spatial reso-
lution and strong noisy sea clutters, and (d1) dim-bright-target image with
low resolution, and heavy noisy cloudy clutters. (a2)—(d2) Filtered results of
(al)—(d1) obtained using our method.

Fig. 4.
grounds and filtered results obtained using the proposed method. Top row,
from left to right, are the (al) original bright-targets image against cloudy-
sky background, (bl) dim-surface-targets image against sea-sky background,
(cl) dim-targets image against terrain-sky background, and (d1) vehicle-
targets image against terrain-sky background. (a2)—(d2) Filtered results
of (al)-(dl).

Representative clipped multitarget images against various back-

TABLE I
AVERAGE SCR VALUES OF ORIGINAL AND FILTERED IMAGES OBTAINED
USING DIFFERENT METHODS FOR THE REPRESENTATIVE
CLIPPED IMAGES

Original LCM  LMWIE AGADM MME MDM MFMM
Fig. 3
1.80 3.07 0.05 3.86 2.46 2.30 51.00
1.56 335 1.31 2.49 2.30 1.98 58.62
2.19 3.51 2.44 2.10 2.06 221 23.57
1.11 1.44 0.21 1.28 1.26 1.32 42.89
Fig. 4
8.66 5.52 30.66 8.28 8.49 9.09 31.87
1.60 2.39 2.51 1.46 1.47 1.56 38.92
431 491 10.97 4.56 4.56 4.46 22.80
2.68 3.43 11.79 2.46 2.56 2.74 40.45

The number of images in each group is 57, 8, 23, and 17,
respectively. This division strategy is able to objectively eval-
uate the performance of our method in term of different
complex backgrounds. Some evaluation results are listed in
Tables III-V.

Table III lists the ranges of SCR and ensemble-average
SCR (denoted as SCR) of each group of original and fil-
tered images obtained by using the LCM, LMWIE, AGADM,
MME, MED, and MFMM methods. It can be seen that the
LMWEIE produces higher SCR values in comparison with other
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TABLE II
BSF VALUES OBTAINED USING DIFFERENT METHODS FOR THE
REPRESENTATIVE SINGLE-AND MULTITARGET IMAGES

LCM LMWIE AGADM MME MDM MFMM

Fig.3

0.72 1.49 0.57 0.63 0.66 15.56
0.63 3.40 0.53 0.57 0.61 8.13
0.93 2.62 0.71 0.74 0.74 8.24
0.77 3.29 0.58 0.64 0.64 24.09
Fig. 4

0.42 1.83 0.26 0.26 0.25 2.70
0.22 1.48 0.22 0.22 0.22 4.77
0.17 0.73 0.12 0.13 0.12 1.24
0.37 3.65 0.32 0.32 0.32 4.44

TABLE III

RANGES OF SCR AND ENSEMBLE-AVERAGE SCR VALUES OF FOUR
GROUPS OF ORIGINAL AND FILTERED IMAGES OBTAINED USING
BASELINE AND PROPOSED METHODS

Methods/Indexes Groupl Group2 Group3 Group4
Original  SCR 021-535  L116-398  081-7.87  0.12-7.98
g SCR 2.35 223 2.97 1.54
LM SCR  0.12~5.95  1.13~499 156633  0.15-5.62

SCR 3.62 2.69 321 1.50
SCR  0.1237.94  1.09391  1.05~1435 0.18~12.26
LMWIE g op 8.31 291 442 2.12
SCR  025~7.85 097459  0.71~7.89  0.11-8.56
AGADM  grp 36y 235 325 1.59
MME SCR  046~731 097429  098-730  0.10~7.30
SCR 3.10 2.22 2.97 1.50
MED SCR 072514 1.154.67 096842  0.14-8.13
SCR 2.79 2.38 3.19 1.55
SCR  2.12~58.12 11.1425.14 3386307 1.56-54.46
MEMM—gop 3550 17.28 37.75 12,01

where SCR denotes the ensemble-average SCR value of every group.

baseline methods. However, the MFMM has the best enhance-
ment performance ranging from the cloudy-sky to terrain-sky
backgrounds. The same conclusions are also derived from
Table IV that lists the BSF ranges and ensemble-average BSF
(denoted as BSF) via diverse methods. Table IV suggests
that the proposed algorithm outperforms the baseline meth-
ods with respect to background suppression for various types
of complex background clutters.

Moreover, the probabilities of detection and false alarm
rates obtained using the baseline and proposed methods are
listed in Table V. We can find that the proposed algorithm
can produce high Pd and low Fa values. By contrast, our
algorithm can work stably for different complex backgrounds
with strong clutters and noise. We resort to Propositions 4-6
to provide theoretical explanations of those superior results
achieved via our method. Propositions 4-6 indicate that the
difference/mutation between a small target and neighbor-
ing background regions is gradually enlarged through the
iterative filtering procedure, and residual clutters and noise
are availably eliminated. It gives easiness to detect targets
accurately.

C. Real Images

In this section, 15 real small-target image sequences with
low SCR values (denotes as sequence 1 to 15) are utilized
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TABLE IV
RANGES OF BSF AND ENSEMBLE-AVERAGE BSF VALUES OF FOUR
GROUPS OBTAINED USING THE LCM, LMWIE, AGADM,
MME, MED, AND MFMM METHODS

Methods/Indexes Group | Group2 Group3 Group4
LCM BSF  0.27~1.17 0.38~0.59 0.22~0.79  0.23~1.02
BSF 0.62 0.42 0.47 0.46
BSF  0.92~18.44 1.09~1.68  0.86~3.48 0.67~5.37
LMWIE BSF 3.60 1.25 1.96 2.17
BSF  0.23~0.99 0.31~0.36  0.22~0.76  0.23~0.86
AGADM BSF 0.52 0.33 0.38 0.36
MME BSF  0.24~099 0.31~0.38 0.22~0.72  0.23~0.86
BSF 0.54 0.34 0.39 0.37
MED BSF  0.24~0.99 0.30~0.37  0.22~0.78 0.23~0.87
BSF 0.55 0.33 0.40 0.37
BSF 1.93~25.38 2.07~6.13 1.74~10.86 1.79~10.69
MEMM B 781 3.50 523 3.43

where BSF is the ensemble-average BSF value of each group.

TABLE V
PROBABILITIES OF DETECTION AND FALSE ALARM RATES
OBTAINED USING DIFFERENT ALGORITHMS

Methods/Indexes Groupl Group2 Group3 Group4
LCM Pd 0.73 0.88 0.72 0.63
Fa 2.1/image 1.5/image 2.1/image 2.5/image
Pd 0.69 0.63 0.56 0.50
LMWIE Fa 2.2/image 2.6/image 2.8/image 3.2/image
Pd 0.53 0.50 0.33 0.33
AGADM Fa 3.0/image 3.l1/image 4.0/image 3.9/image
MME Pd 0.49 0.38 0.28 0.30
Fa 3.2/image 3.6/image 4.2/image 4.l/image
MED Pd 0.51 0.38 0.28 0.37
Fa__3.0/image 3.6/image 4.l1/image 3.6/image
Pd 0.95 1.00 0.94 0.97
MFMM Fa 0.4/image 0.1/image 1.2/image 0.3/image

to test the performance of the proposed target detection algo-
rithm. The total number of real small-infrared-target images is
1345. The details about targets and backgrounds are supple-
mented in the supplementary materials. Fig. 5 displays repre-
sentative images randomly derived from the 15 sequences. It
can be seen that most of test sequences have very low con-
trast or SCR, and the targets have similar distribution to the
backgrounds. In such case, the proposed method is expected
to pop out targets and neglect complex backgrounds well.

The backgrounds of the real sequences are roughly clas-
sified into the sea-sky backgrounds [e.g., Fig. 5(a)—(f), (n),
and (o)] and cloudy-sky backgrounds [e.g., Fig. 5(g)—(m)]. We
can find that the images have strong sea-/cloudy-sky clutters
and heavy noise. After the proposed algorithm, the clutters and
noise are effectively suppressed, and the small targets are well
enhanced, as shown in Fig. 6 [viz., the respective 3-D gray dis-
tributions of filtered results of Fig. 5(a)—(0)]. Hence, the targets
are easily detected. When compared with the filtered results
via the LCM, LMWIE, AGADM, MME, and MED methods
that are provided in the supplementary materials, our method
performs better than the baseline methods regarding both tar-
get enhancement and background suppression. The SCR and
BSF comparisons can also validate this conclusion, as shown
in Fig. 7 and Tables VI and VII.

For the representative real images, Fig. 7(a) shows
the aSCR wvalues of the original and filtered images
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Fig. 5. Representative real images randomly derived from the 15 real small-
infrared-target-image sequences.

(a) (O] () (m)

o

*“%
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Fig. 6.  For the representative real images, (a)-(0) denote the 3-D gray
distributions of filtered results obtained using the proposed algorithm.

via the LCM, LMWIE, AGADM, MME, MED, and
MFMM methods. We can find that our algorithm sig-
nificantly improves the aSCR of images with different
background clutters, and target sizes and/or types. All the
P-values (including Poriginal versus MEMM> PLCM versus. MEMM>
PLMWIE versus MFMM PAGADM versus MFMM
PMME vresus MEMM, and  PMED versus MEMM) are  less than
0.0001. This indicates that the proposed MFMM algorithm
is statistically significantly different from the baseline
methods. As for the BSF, the performance of background
suppression via different methods is shown in Fig. 7(b). It
can be found that the proposed MFMM method is supe-
rior to the baseline algorithms for suppressing different
intricate backgrounds, except for the comparisons between
the LMWIE and MFMM algorithms for Fig. 5(n) and (o).
Nevertheless, the targets in Fig. 5(n) and (o) are con-
cealed in the filtered results obtained using the LMWIE
(see supplementary materials). This causes great troubles
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Fig. 7. (a) SCR comparisons of original and filtered images obtained using
different algorithm for representative real images. (b) BSF values obtained
using the LCM, LMWIE, AGADM, MME, MED, and MFMM methods for
the representative real images.

for detecting the targets, that is, high miss rates. For the
statistical analysis of BSF term, the Poriginal versus MEMM,
PLcM versus MFMM»> PAGADM versus MEMM> PMME versus MEMM
and  PMED versus MEMM  are  less than 0.0001, while
PLVWIE versus MMM = 0.335. There is no significant
statistical between the LMWIE and MFMM for suppressing
backgrounds, but the LMWIE potentially masks small targets
and arouse high miss and/or false detection rate.

For the real sequences, the ensemble-average SCR and BSF
comparisons are displayed in Tables VI and VII. Similar to
Fig. 7, the conclusions derived from Tables VI and VII demon-
strate that the proposed detection algorithm has less clutters and
noise residual for different background types, target types, and
target sizes, when compared with the baseline methods. This
indicates that the proposed detection method maintains lower
false alarm rates under the same probability of detection. Since
the targets submerge in the filtered results of sequences 14 and
15 obtained using the LMWIE (those filtered images are homo-
geneous), the ensemble-average BSF values are greater than
that achieved by using the MFMM (see Table VII). Howbeit,
the target detection in those cases encounters great challenges
for the LMWIE (see supplementary materials).

Since small targets in sequences 3 and 13 keep motion in
each frame (the number of frames are 65 and 70, respectively),
Fig. 8 displays the respective ground-truth and detected trajec-
tories of target motion obtained using the proposed method.
We can find that the ground-truth trajectories are curvilinear.
For sequence 3, the most horizontal detection errors are no
greater than one pixel (the respective frequencies of zero-,
one-, and two-pixel errors are 33, 30, and 2), and the most
vertical detection errors are zero (the frequency of zero-pixel
errors is 44 and that of one-pixel errors is 21). For the sequence
13, the major horizontal detection errors are zeros (the num-
ber of zero-pixel errors is 50 and that of one-pixel errors is
20), and the major vertical errors are no more than two pixels
(the numbers of zero-, one-, two-, and three-pixel errors are
21, 25, 17, and 7, respectively). It can draw a conclusion from
Fig. 8 that the tracked traces do almost match the trajectories
of target motion.

The receiver operating characteristic (ROC) curve is adopted
to test the detection performance of our method. ROC curve
is a plot of the probabilities of detection (a fraction of
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TABLE VI
ENSEMBLE-AVERAGE SCR VALUES OF 15 REAL IMAGE SEQUENCES
THROUGH DIFFERENT ALGORITHMS

Original LCM LMWIE AGADM MME MED MFMM

#1 0.90 0.50 6.50 0.57 0.68 0.66 26.07
#2 2.10 1.26 10.08 1.29 1.44 1.42 20.42
#3 7.83 4.16 9.86 7.36 7.98 7.98 22.89
#4 4.84 322 2.70 4.03 439 4.57 8.40

#5 2.13 2.84 1.16 2.61 241 241 21.07
#6 1.77 3.14 0.72 3.67 3.02 3.02 38.78
#7 5.76 597 7.30 7.65 6.81 7.01 42.78
#8 3.05 431 2.60 4.46 3.99 3.81 25.69
#9 11.22 5.74 26.33 11.04 9.77  12.66 35.74
#10 223 3.23 11.31 224 242 2.29 45.00
#11 4.60 6.31 6.56 5.76 5.89 5.89 23.34
#12 532 4.81 22.21 5.69 5.58 5.85 32,51
#13 0.72 0.91 431 0.67 0.69 0.69 11.68
#14 3.44 4.18 7.34 3.27 3.41 3.53 7.61

#15 2.29 2.79 2.65 2.15 2.19 2.28 10.59

TABLE VII

ENSEMBLE-AVERAGE BSF VALUES OF 15 REAL IMAGE SEQUENCES
OBTAINED USING DIFFERENT ALGORITHMS

LCM LMWIE AGADM MME MED MFMM
#1 062 383 0.60 0.61 0.61 10.43
#2 030 334 0.29 0.31 0.32 424
#3 012 091 0.07 0.07 0.08 1.10
#4 033 1.97 0.32 0.34 0.35 2.72
#5 113 1.67 1.08 1.07 1.07 7.62
#6 1.07 4.14 0.96 0.98 1.04  26.21
#7 0.58 1.34 0.42 0.42 0.42 4.87
#8  0.38 1.24 0.37 0.39 0.39 3.41
#9 048  4.68 0.36 0.36 0.38 591
#10 054  6.50 0.48 0.48 0.48 23.91
#11 096  5.09 0.72 0.75 0.76  28.63
#12 0.62 14.27 0.53 0.53 0.54  20.87
#13 0.18  0.86 0.17 0.17 0.18 231
#14 143 4540 0.83 0.84 0.84 7.28
#15 123  29.35 0.91 0.97 0.97 19.08
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Fig. 8. (a) and (b) Ground-truth trajectories and detected trajectories obtained
using the proposed detection method for sequences 3 and 13.

true positives over positives) versus the false alarm rates
(a fraction of false positives over negatives). The detected
results are correct if the pixel distance between centers of the
ground-truth and detected results is less than a given thresh-
old (e.g., 5 pixels [12], 4 pixels [3], and 3 pixels [2]). The
smaller threshold chosen means the lower detection errors and
less workload in IRST applications. Hence, we choose the
threshold as 3 pixels.

We provide ROC curves obtained using the LCM, LMWIE,
AGADM, MME, MED, and MFMM algorithms for the 15 real
sequences in Fig. 9. The probability of detection and false
alarm rate are based on (18). The ROC curves indicate that
our method has better detection performance than the base-
line methods. Especially for the real sequence 1, 2, 4-10, 12,
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13, and 15, the proposed method owns the highest Pd but
lowest Fa values in comparisons. For the sequence 3 or 11,
the LMWIE is slightly superior to the proposed method when
Fa < 0.06 or Fa < 0.05. However, the MFMM method can
reach 1 faster than that method when Fa > 0.06 or Fa > 0.05.
For sequences 1-4, 7, 10, and 11, the LMWIE has better
performance than other baseline methods. Fig. 9 also indi-
cates that the LCM possesses higher Pd but lower Fa values,
when compared with other baseline methods for sequence 6,
8,9, and 11-13. The AGADM usually produces low Pd but
high Fa values for the sequences except sequences 6 and 8-10.
The comparisons derived from the ROC curves demonstrate
that the proposed method is appropriate and robust to detect
small targets against complex backgrounds.

D. Limitations

Qualitative and quantitative comparison results demonstrate
that the proposed method is able to work stably and effec-
tively for different complex backgrounds and target types.
However, there are several limitations to this paper: first, the
flexibility of the proposed method should be further explored
in background cases with heavy disturbances, such as noisy
bright spots and/or strong sea/cloudy clutters, although the pro-
posed algorithm can tackle such conditions to some extent.
This illustrates prospects in future study. Besides, theoretical
justifications regarding the detection performance on highly
difficult challenges/situations should be offered. Second, much
attention should be paid to the determination of optimum
window size because large window may give rise to the
possibility of spatial nonuniformity in the background that
causes some false detections. In this case, how to determine
the optimum window/patch size that could handle multiple
target sizes becomes a key issue in applications of the pro-
posed algorithm. This points out a key for our future work.
Late, the proposed method uses the multiple iterations scheme

. 9. (a)—(0) ROC curves of the 15 real sequences obtained using different methods.

to eliminate complex background clutters and noise step by
step. Accordingly, a faster version of the current algorithm
should be investigated. If the above are effectively han-
dled, the potential of the proposed algorithm will be further
strengthened.

V. DISCUSSION

In this section, we discuss the effects of the window size
and stopping criterion involved in the proposed method. In
addition, we discuss the noise sensitivity of the proposed
algorithm.

A. Effects of Parameters

Some parameters should be pondered reasonably in the use
of our method, e.g., the maximum size of window to com-
pute MEM (6) and the stopping criterion to define number of
iterations (8). The parameters can be experimentally /manu-
ally chosen. However, this is a time-consuming approach and
difficult to reach the best detection result owing to criterion
lack for quantitative evaluation. Alternatively, based on some
reasonable assumptions, the proposed detection method can be
simplified in applications.

The performance of the proposed algorithm depends on the
choice of window size [viz., K in (4)]. If the window size is too
small, the target is possibly masked by background clutters.
This potentially yields high miss rates. On the other hand, if
too large size is considered, the possibility of spatial nonuni-
formity in the background image may engender (that is, the
assumption with regard to the spatial correlation in the back-
ground may not hold), which may cause many false detections
with (6). To analyze the effects of the maximum window size
in (6), we set the window size as 5 x5,7x7,9x9, 11 x 11,
13 x 13, 15 x 15, and 17 x 17, respectively, and then, test
the proposed algorithm. The results are shown in Fig. 10 and
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Fig. 10. 3-D gray distributions of noise-added image and filtered results
obtained using the proposed method with different maximum window sizes.
(a) Noise-added image of Fig. 5(m). (b)—(h) Filtered results through the pro-
posed method with the maximum window size of 5x5,7x7,9x09, 11 x11,
13 x 13, 15 x 15, and 17 x 17, respectively.

ALE*=2.1386 ALE*=0.3314

ALE'=4.5102

Fig. 11.
numbers of MFMM iterations, where ALE[(I =0,1,2,3) denotes the ALE
after / iterations. (a) Original image. (b)—(d) Filtered results after one, two, or
three MFMM iterations. (e)—-(h) 3-D gray distributions of (a)—(d). The gray
range of original and filtered images is normalized to [0,255].

Representative small target image and filtered results after different

Table VIII. Fig. 10 shows 3-D gray distributions of noise-
added image [Fig. 5(m) is added a zero-mean Gaussian white
noise, and the variance of noise is 0.001] and filtered results
obtained using the proposed method with different maximum
window sizes. Table VIII displays the number of iterations,
ALE values, elapsed time, as well as SCR values of filtered
results. The SCR of Fig. 10(a) is 2.03. It can be found from
Fig. 10 and Table VIII that the choice of K = 4 can achieve
a good comprise in SCR and elapsed time. In addition, a small
target has a total spatial extent of less than 80 pixels [3],
which is defined by Photo-Optical Instrumentation Engineers
from the perspective of imaging. This suggests that the proper
window size in (6) is no more than 4. Hence, the maximum
window size in (6) is chosen as 9 x 9 (that is, K is 4) in the
experiments. Extensive experimental results (see Section IV)
suggest that the selection of parameter K = 4 can result in
robust detection performance for different target types and
sizes, and background types. Furthermore, the supplementary
materials supplements some experiments of images with large
target size.

Given prior information from a small target image (such
as, a suitable fuzzy distance metric), target enhancement
by multiple copies is the task of suppressing mazy back-
ground clutters and noise as much as possible. However,
the large number of MFM iterations increases computational
cost. Therefore, we perform some experiments to discuss the
effects of stopping criterion, as shown in Fig. 11. A small
target image randomly selected from sequence 13 is shown
in Fig. 11(a), where the white rectangle denotes the loca-
tion of target. The ALE value is 3.8679. After different

1705
TABLE VIII
PERFORMANCE OF THE PROPOSED METHOD WITH DIFFERENT
MAXIMUM WINDOW/PATCH SIZES

5x5 7x7 9x9 11x11  13x13  15x15  17x17
Num. 3 3 3 3 3 3 3
ALE"  0.8810 0.4262 04984 0.5942 0.6966 0.7881 0.8595
Time 8.09 11.97 15.99 19.85 23.00 27.90 31.79
SCR 2546 39.83 40.83 38.14 34.86 31.98 29.48

Note: Num. denotes the iteration stopping point based on the stopping criterion
(8). ALE" denotes the ALE value after Num. MFMM iterations.

TABLE IX
EVALUATION RESULTS OF NOISE-ADDED AND NOISE-REMOVED IMAGES

Group #1 #2 #3 #4

Noise-added images

SCR Original  2.13 1.64 1.38 1.21
MFMM  42.76 42.82 4039 3837

BSF 17.35 18.54 18.65 19.64

Noise-removed images

SCR Original ~ 3.52 3.06 245 2.07
MFMM 4341 4229 3921 36.67

BSF 21.52 2128 20.52 19.95

numbers of MFMM iterations, the filtered results are shown
in Fig. 11(b)—(d), respectively. The corresponding ALE values
are 4.5102, 2.1386, and 0.3314. Fig. 11(e)—(h) show the 3-D
gray distributions of Fig. 11(a)—(d). It can be found that the
complex background clutters and noise are distinctly atten-
uated after each MFMM operation (theoretical explanations
resort to Propositions 4-6). Based on stopping criterion (8),
the number of iterations is 3. In this case, the target is well
enhanced and the clutters and noise are well eliminated [see
Figs. 11(d) and (h)]. Fig. 11 indicates that the proposed
stopping criterion (8) is a good compromise in practice.

B. Noise Sensitivity

To analyze the noise behavior of the proposed algorithm,
we conduct a Monte-Carlo study with lots of Gaussian white
noise realizations for each noise level. An image is randomly
selected from the sequence 11, then Gaussian white noise with
different variances is added to it (the noise mean is 0, and the
variance is 0.002, 0.004, 0.006, and 0.008, respectively). In
this case, four noise-added images are synthesized. The above
work has been done 100 times, which synthesizes four groups
of noise-added images with different noise levels (denoted as
Group 1 to 4). Subsequently, we use block-matching and 3-D
filtering (BM3D) [37] to denoise those noise-added images
because BM3D can achieve good denoising performance.
Then, four corresponding groups of noise-removed images
are generated.

The SCR of original non-noise-added image is 3.65, and that
becomes 44.19 for the corresponding filtered result through
the proposed algorithm. Table IX displays the comparisons
of the proposed algorithm on those noise-added and noise-
removed images. It can be seen that the ensemble-average SCR
values of four groups of noise-added images are 2.13, 1.64,
1.38, and 1.21, while that are 3.52, 3.06, 2.45, and 2.07 for
the noise- removed images. After our method, the respective
values are obviously improved, as displayed in Table IX. This
means that the proposed method can significantly enhance the
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targets as well as suppress the background clutters and noise.
From the perspective of SCR values, there is little difference
among the filtered results of non-noise-added images, noise-
added images, and noise-removed images.

The BSF of non-noise-added image is 16.96. Table IX lists
the ensemble-average BSF values of each group of noise-
added and noise-removed images. Both the SCR and BSF
evaluation results verify the noise insensitiveness of the pro-
posed method. Moreover, the probabilities of detection of each
group of noise-added and noise-removed sequences are 1, and
the false alarm rates are 0. Therefore, the proposed method has
good immunity to noise. More experimental results regarding
noise sensitivity are provided in the supplementary materials.

VI. CONCLUSION

This paper presents an effective fuzzy distance/metric model
called MFM for detecting small infrared target, according
to the correlation properties of the background in spatial
domain and noncorrelation properties between the target and
background regions. Therefore, the target detection task is
transformed into a measure issue of portraying such correla-
tion/noncorrelation properties, which can be availably solved
using the MFM that measures the certainty of targets in
images. In this case, the fuzzy metric is close to O inside
the background area, while within the area between the target
and neighboring background, the fuzzy metric is greater than
0. Accordingly, the presented algorithm can eliminate substan-
tial jamming factors, such as complex background clutters and
noise. In particular, it significantly improves the SCR and BSF
values of image. Thus, the presented algorithm ensures access
to high probabilities of detection and low false alarm rates.

Experiments implemented on extensive clipped and real-
data small infrared target images against diverse complicate
cloudy- or sea-sky backgrounds (the number of clipped images
is 105, and that of real images is 1345) demonstrate that the
presented detection algorithm significantly outperforms sev-
eral classical baseline methods, such as the LCM, LMWIE,
AGADM, MME, and MED methods. The qualitative and
quantitative results also demonstrate that the presented algo-
rithm works more stably for different background types, SCR
values, target types, and target sizes. In the future, we will
investigate a faster version of the current method. We will
also further improve the flexibility of our method in highly
difficult background cases.
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