PAPER
Shizhen Chen, Xin Zhou et al.
Potential detection of cancer with fluorinated silicon nanoparticles in 19F MR and fluorescence imaging
Potential detection of cancer with fluorinated silicon nanoparticles in 19F MR and fluorescence imaging†

Sha Li,a Yaping Yuan,a Yuqi Yang,a Conggang Li,a Michael T. McMahon,bc Maili Liu,a Shizhen Chen*a and Xin Zhou*a

Fluorescence is widely used for cell imaging due to its high sensitivity and rich color choices but limited for in vivo imaging because of its low light penetration. Meanwhile, magnetic resonance imaging (MRI) is widely applied for in vivo diagnosis but not suitable for cell imaging because of its low resolution. As a result of rare background in living organisms, 19F-MRI stands out in several fields of clinical application. Herein, we report a one-pot microwave synthesis of fluorinated silicon nanoparticles (19FSiNPs), for detection of cancer cells and tumors. Based on the quantum effects of the nano-sized nanoparticles, 19FSiNPs can act as a label free dye for ultracontrast cell fluorescence imaging. Our experiments demonstrated that these nanoprobes significantly enhanced in vivo 19F/1H MRI contrast in rats with non-small cell lung tumors. Moreover, the resulting 19FSiNPs exhibited high water dispersibility and excellent biocompatibility, which make them promising for both cell imaging and in vivo imaging applications.

Introduction

In recent years, the combination of optical imaging and magnetic resonance imaging (MRI) has invoked great interest in biological and medical applications. As a noninvasive molecular imaging modality, MRI produces exceptional spatial and anatomical resolution images and enables unbiased assessment of tissue physiology and pathology without depth limitations. However, it suffers from the drawbacks of low sensitivity and poor specificity. On the contrary, optical imaging provides real-time images with high sensitivity and specificity but with poor quantification as well as limited tissue penetration depth. Thus, integration of these two complementary imaging modalities into a novel MRI/fluorescence dual-imaging agent will significantly benefit the monitoring of molecular and cellular events in living organisms.

Generally, 1H-MRI uses exogenous contrast agents which contain Gd(III),$^4–^6$ Mn(II)$^7–^9$ chelates or superparamagnetic iron oxide (SPIO) nanoparticles$^{10–12}$ to modulate the relaxation of surrounding protons, providing enhanced image contrast with high potential for cancer imaging. Although such contrast agents have significantly improved MRI performance, the intense proton background sometimes causes insufficient discrimination of tumor tissues from healthy tissues. One of the most studied strategies to overcome these issues is the development of a “second color” or “hot spot” imaging using heteronuclear MRI atoms, such as 13C, 23Na, 31P, or 19F in addition to 1H. In this case, the magnetic resonance effect of the additional element adds a second colored layer with independent information about the anatomical details provided by the corresponding gray-scale 1H image. With its extremely favorable NMR properties, 19F seems to be a very promising imaging nucleus.$^{13–17}$ Fluorine offers an intense MR sensitivity (83% relative to 1H) due to its high natural abundance and high gyromagnetic ratio (40.03 MHz T$^{-1}$, 94% relative to 1H). Moreover, there is nearly no detectable endogenous fluorine, which leads to a low background signal in the living body, resulting in extremely high specificity and sensitivity.18 For all of these reasons, a variety of 19F contrast agents (CAs) have been recently investigated for early diagnosis of cancer.$^{16,19–21}$

Some fluorine organic molecules, such as perfluorocarbons (PFCs), were reported to be used as 19F CAs, because of their strong MRI signal as well as their chemical and biological inertness.$^{22–23}$ However, the amphiphobic characteristics of fluorous compounds make it difficult to stabilize them in a form suitable for cell uptake.26 Typically, researchers emulsify PFCs into lipid micro/nano-particle formulations by introducing surfactants or
high-energy techniques such as microfluidization to make them disperse in water, but the accompanying droplet heterogeneity and the instability of the emulsions originating from molecular diffusion induced particle size expansion have further impaired the performance of these nanoemulsions. Moreover, the magnetic resonance signal from PFC emulsions almost always splits into multiple peaks which may decrease the effective fluorine concentration and reduce signal intensity. In view of the potential importance of 19F-MRI, new 19F probe design strategies are needed for early monitoring of cancer diseases to overcome the shortcomings of perfluorocarbon formulations.

The main challenge, however, is to fabricate a facile 19F CAS design strategy for rendering these with excellent water solubility and a high payload of fluorine atoms, and enabling a variety of surface functionalization. The introduction of nanomaterials circumvents the drawbacks of small molecule based 19F CAS, and provides another concept for high sensitivity 19F-MRI. Surface functionalization. The introduction of nanomaterials circumvents the drawbacks of small molecule based 19F CAS, and provides another concept for high sensitivity 19F-MRI. Pasquato et al. first fabricated fluorinated amphiphilic thiolate coated gold nanoparticles with favorable water solubility. Although a large amount of fluorine was freighted, the peaks split, resulting in broad and weak signals which produced additional imaging artifacts. Construction of multifunctional imaging probes by attaching perfluorocarbon (PFC) onto quantum dots has also been reported and given access to both multi-spectral MR and multicolor optical imaging modalities, but the safety concerns induced by heavy metal ions in II/VI QDs are still not satisfactory. Alternatively, we focused on silicon functional nanomaterials which have shown great promise in myriad of applications due to their intrinsic advantages, such as high abundance, low cost, minimal toxicity and favorable biocompatibility. The zero-dimensional fluorescent silicon nanoparticles (SiNPs) have been intensively studied for biomedical applications as biological labeling agents because of their unique optical properties. Compared to traditional organic fluorochromes, fluorescent SiNPs show strong fluorescence and ultrahigh photostability which was validated to be suitable for long-term and real-time imaging of cells. The nano sized SiNPs offer greater bioimaging applications because of easy tissue penetration and effective avoidance of reticuloendothelial system uptake in vivo. In addition, the nano size results in rapid and efficient urinary excretion and thus lower potential toxicity. Besides, in parallel with a growing interest in their design and synthesis, water soluble fluorescent SiNPs can now be conveniently synthesized and variably functionalized for a wide range of applications. Inspired by these advantages, we propose that fluorescent SiNPs could be utilized as an ideal candidate for fluorine based scaffolds.

Herein, we present a one-pot microwave synthesis to fabricate fluorinated silicon nanoparticles (19FSiNPs) that can serve as dual 19F-MRI and fluorescence bimodal imaging agents for labeling of cancer cells. The chemically and magnetically equivalent 19F molecules grafted on the SiNPs provide 19F-based MR imaging capability, while the fluorescent SiNPs enable ultrastark contrast in vitro cellular imaging without requiring additional doping with fluorescent species. As expected, the 19FSiNPs exhibited strong fluorescence, high 19F-MRI sensitivity, favorable bio compatibility and excellent aqueous solubility. In vivo tests showed that the 19FSiNPs were suitable for 19F-MRI and fluorescence imaging of tumors.

Experimental

Materials

(3-Aminopropyl)trimethoxysilane (97%), trisodium citrate dihydrate (≥ 99.0%), perfluoro-tert-butyl alcohol (98%), and sulfosuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate (Sulfo-SMCC) were purchased from J&K Scientific Ltd. Peptide cyclo-(Arg-Gly-Asp-D-Tyr-Cys) (c-(RGDyC)) was purchased from GL Biochem (Shanghai, China). Dialysis bags (M1000 Da and 3500 Da) were purchased from Biosharp (Hefei, China). Human lung adenocarcinoma cell line A549 and breast cancer cell line MCF7 were obtained from the Cell Bank of Chinese Academy of Sciences (Shanghai, China). Nucleic acid stain RedDot2 was purchased from Biotium.

Apparatus

The Monowave 300 microwave system used for synthesizing the fluorinated silicon nanoparticles (19FSiNPs) was made by Anton Paar, Austria. Exclusive vitreous vessels with a volume of 30 mL were equipped to the system to provide security during reactions demanding high temperature and pressure. Transmission electron microscopy (TEM) images were acquired via a JEM-2100 (HR) TEM with a LaB6 filament at an accelerating voltage of 200 kV. TEM and HRTEM samples were prepared by dispersing the sample onto carbon-coated copper grids upon evaporating the excess solvent. Energy-dispersive X-ray (EDX) spectroscopy was utilized to determine the fraction of the resultant materials. Light-scattering analysis was performed by using a DynaPro dynamic light scatter (DLS), which was made by Malvern Corp, UK (ZEN3690). The chemical composition of the 19FSiNPs was determined by an ESCALAB 220i-XL X-ray photoelectron spectrometer (XPS) (VG Scientific Ltd). For FTIR measurements, a mixture of KBr and 19FSiNPs solid samples was ground into a powder and pressed into a slice. UV-vis absorption spectra were recorded on an Evolution 220 spectrophotometer (Thermo Fisher scientific). Fluorescence spectra were recorded on an Edinburgh FS5 fluorescence spectrophotometer. Optical measurements were performed at room temperature under ambient air conditions. The concentration of cells was confirmed by an auto cellometer K2 from Nexcelom (Lawrence, MA, USA). All the fluorescence imaging experiments at the cell level were finished on a laser scanning confocal microscope Nikon A1 (Nikon, Tokyo, Japan). In vivo fluorescence imaging was performed on an SI Imaging system (Spectral Amix). All in vitro and in vivo 19F-MRI experiments were performed on a 9.4 T Micro-imaging system (Bruker Avance 400, Ettlingen, Germany).

Synthesis of fluorinated silicon nanoparticles (19FSiNPs)

A one-pot microwave approach was employed to fabricate fluorinated silicon nanoparticles. Firstly, the 19FSiNPs precursor was prepared by adding 4.11 mL of (3-aminoethyl)trimethoxysilane (APS) to 15 mL of high purity water dissolved with 0.697 g trisodium citrate dihydrate. The mixture was sonicated for 5 min. Then, unhydrated alcohol dissolved with perfluoro-tet-butyl alcohol was added to the mixture quickly followed by sonication for...
5 min to get a homogeneous solution. The mixed solution was transferred to an exclusive vitreous vessel with a volume of 30 mL. Finally, blue emitting 19FSiNPs were prepared under 200 °C for 60 min. After cooling to room temperature, the obtained mixture was further dialyzed (1000 Da) in high purity water to fully remove impurities with molecular weight smaller than 1000 Da, such as unreacted APS molecules, trisodium citrate dihydrate molecules and perfluoro-tert-butyl alcohol molecules.

The as-prepared 19FSiNPs displayed intense blue fluorescence under 365 nm UV irradiation. To determine the concentration of 19FSiNPs, the obtained mixture was filtered through a 0.22 μm microporous filter, followed by treatment of freeze-drying to obtain the 19FSiNPs solid powder. Afterwards, the required concentration of 19FSiNPs aqueous solution with blue luminescence was investigated for cellular fluorescence imaging, cellular 19F-MRI and in vivo 19F-MRI assessments.

19FSiNPs covered with plentiful amino groups were gradually tagged with sulphydril containing c(RGDyC) by using sulfo-SMCC as a cross-linker. In brief, sulfo-SMCC (10 mM in pH = 7.4 PBS) was first added to 100 μL of a dispersion of 19FSiNPs (30 mg mL $^{-1}$ in pH 7.4 PBS). The mixed solution was then incubated at 25 °C for 1 h under gentle stirring. The resultant mixture was transferred to a 3 kDa ultrafiltration tube for purifying at 6500 rpm for 15 min twice with phosphate buffer (pH = 6.8) to remove residual sulfo-SMCC. Afterwards, $\alpha_{2}\beta_{1}$ integrin targeting peptide c(RGDyC) (presorbed in pH = 6.8 PBS, 10 mM) was subsequently added to the sulfo-SMCC modified 19FSiNPs and reacted at room temperature in the dark for another 4 h, producing the RGD tagged 19FSiNPs (19FSiNPs-RGD). The resultant mixture was further purified by centrifugation at 6500 rpm, for 15 min several times in 3 kDa Nanosep centrifugal devices, until the absorbance at 275 nm tested in the below solution passing through the ultrafiltration membrane was nearly zero. The purified 19FSiNPs in the upper solution was redispersed in PBS, and stored at 4 °C in the dark for the following studies.

Cellular imaging

A549 cells and MCF-7 cells were cultured in RPMI 1640 medium (Boster, China), supplemented with 10% fetal bovine serum (Boster, China) and antibiotics (100 μg mL $^{-1}$ penicillin and 100 μg mL $^{-1}$ streptomycin, Boster, China) in humidified air with 5% CO$_2$ at 37 °C.

A549 (integrin $\alpha_{2}\beta_{1}$-Positive) cells at a density of 2 × 105 mL $^{-1}$ were seeded in a 6-well chamber slide with one piece of cover glass at the bottom of each chamber and then incubated overnight, followed by co-incubation with the fresh medium containing 19FSiNPs and 19FSiNPs-RGD (2 mg mL $^{-1}$) for different times. Then, the cells were washed with PBS three times to remove extra solution. To achieve fixation, A549 cells were immersed in 4% paraformaldehyde for 10 min. For staining of nuclei, the fixed A549 cells were incubated with 1 × RedDot2 for 30 min. Finally the stained cells were mounted on slides in fluoromount with coverslips. The fluorescence images were acquired by confocal laser scanning microscope (A1R/A1, Nikon, Japan). For MCF-7 cell imaging, the manipulations were identical to those mentioned above.

Cell viability

The cytotoxicity of 19FSiNPs and 19FSiNPs-RGD was evaluated via the methylthiazolytetrazolium (MTT) assay against the cultured A549 and MCF-7 cell lines. Briefly, A549 cells were seeded into 96-well plates at a density of 5 × 104 cells per well and incubated overnight for cell attachment. 19FSiNPs and 19FSiNPs-RGD were diluted with the medium to specific concentrations (UV absorption at 335 nm was 0.8, 0.4, 0.2, 0.1, and 0.05 respectively) and added to the well, which was followed by co-incubation at 37 °C for 4 h under 5% CO$_2$. The cells were then washed twice with PBS and further incubated in fresh culture medium for an additional 44 h. Thereafter, 3-((4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) was added to the culture medium with the final concentration of 0.5 mg mL $^{-1}$ and incubated at 37 °C for another 4 h. 200 μL DMSO was added per well after removing the medium and shaken for 30 min to fully dissolve the colored formazan, which was produced by cellular reduction of MTT (reduction takes place only in living cells when the mitochondrial reductases are active). The absorbance of the solution in each well was measured at 490 nm by using an ELISA plate reader (Spectra MAX 190, Molecular Devices, USA).

19F-NMR measurements

Nanoparticles were prepared in 90% distilled water and 10% D$_2$O. All of the 19F NMR experiments were performed on a Bruker AMX-500 NMR spectrometer. CF$_3$SO$_3$Na was used as an internal standard to determine the content of fluorine atoms in the nanoparticles. Briefly, the mixture of 19FSiNPs and CF$_3$SO$_3$Na was placed in an NMR tube, and one-dimensional (1D) 19F spectra were acquired on a 500 MHz spectrometer. The 19F spectra displayed two narrow major peaks, one each for 19FSiNPs and CF$_3$SO$_3$Na. The ratio of the integrated areas under these two peaks was used to calculate the mean 19F content.

The inversion-recovery experiments were employed to measure the longitudinal time T_1, and CPMG (Carr–Purcell–Meiboom–Gill) experiments were performed to measure the transverse relaxation time T_2.

Cell experiment for 19F-MRI

A549 cells were cultured in RPMI 1640 medium (Boster, China) containing 10% fetal bovine serum at 37 °C under 5% CO$_2$. The regular culture medium was removed when the cell confluence reached 90–100%. Serum-free culture medium containing the 19FSiNPs and 19FSiNPs-RGD (C$_f$ = 15 mM) was added. After co-incubation for a further 1 h at 37 °C, 9 × 104 cells were harvested with trypsin–EDTA and mixed with PBS. Afterwards, the cells were centrifuged (1000 rpm, 5 min) and washed with PBS to remove the remaining probe. Then the cells were lysed by using 1 mL of radio immunoprecipitation assay (RIPA) lysis buffer for 2 h, and the supernatants were collected for 19F-MRI assessment.

In vivo 19F-MRI and fluorescence imaging

BALB/c male nude mice (aged 5–6 weeks, 18–21 g body weight) were purchased from Human SJA Laboratory Animal Co., Ltd. All experimental protocols in this study were approved by the
Animal Care and Use Committees at the Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences. To prepare tumor-bearing mice, A549 cells were centrifuged and resuspended in PBS to a concentration of 1×10^7 cells per mL. Then the mice were inoculated subcutaneously with 100 μL A549 cell suspension on the left hind leg and allowed to grow for 2 weeks; typically, a solid tumor is formed during this period. For in vivo 19F-MRI imaging, living mice were firstly anesthetized by intraperitoneal injection of 150 μL 1% pento-barbitalum natricum (in PBS). The mice bearing tumors were then administered with 100 μL of 19FSiNPs solution ($C_T = 650$ mM) through intratumor injection and the MRI measurements were carried out on 400 M Bruker BioSpec MRI system. The RARE (rapid acquisition with refocused echoes) method was employed for 1H MRI. The parameters for 1H MRI were set as follows: number of average = 4, TR (repetition time) = 1500 ms, TE (effective time) = 8.2 ms, FOV (field of view) = 40 mm × 40 mm, SI (slice thickness) = 2 mm, matrix size = 256 × 256. Correspondingly, the RARE method was applied for 19F-MRI, and the parameters were as follows: number of average = 64, TR/TE = 3500 ms/8.15 ms, FOV = 40 mm × 40 mm, SI = 20 mm, matrix size = 64 × 64, and the total scan time was approximately 30 min. For in vivo fluorescence imaging, tumor bearing mice (left foreleg) were administered 200 μL of 19FSiNPs solution (10 mg mL$^{-1}$ in PBS) through intratumor injection and the fluorescence imaging measurements were carried out on an SI Imaging system (Spectral Amix). The excitation wavelength was 360 nm, and the emission filter wavelength was 490 nm.

Results and discussion

Morphology and surface characterization of 19FSiNPs

19FSiNPs were produced by a simple one-pot microwave-assisted reaction as illustrated in Scheme 1. In a typical reaction, (3-amino-propyl)trimethoxysilane (APS) was gradually reduced by trisodium citrate (methoxy groups of APS were reduced to hydroxy groups) and further linked with perfluoro-tert-butyl alcohol under microwave irradiation. As the reaction proceeded, crystal nuclei were formed slowly and uniformly which was favorable for surface ordering and improving monodispersity. The Ostwald ripening stage35,36 occurred along with the formation of many small particles. Afterwards, the smaller crystals act as fuel for the growth of bigger crystals with smaller surface-to-volume ratios, reducing the energy of the entire system, and finally producing stable fluorinated silicon nanoparticles with larger size. The prepared 19FSiNPs exhibited excellent water solubility without additional surface modification.

Typical transmission electron microscopy (TEM) images of 19FSiNPs are shown in Fig. 1(a), in which the resultant 19FSiNPs were nearly spherical in shape without obvious aggregation. The particles in the inset of Fig. 1(b) clearly show the crystalline nature of the SiNPs, with lattice fringes for the [220] d-spacing, 1.91 Å. The selected area electron diffraction (SAED) pattern for 19FSiNPs (Fig. S1, ESI†) can be indexed to the [111], [220] and [311] diffraction rings and is in good agreement with the face-centered cubic structure.

The average particle diameter was found to be 3.85 ± 1.57 nm by measuring more than 200 particles as indicated in Fig. 1(c). Dynamic light scattering (DLS) measurements indicated that the average hydrodynamic diameter of the 19FSiNPs was 5.37 ± 3.2 nm with a low PDI value of 0.212 as shown in Fig. 1(d). Particularly, 19FSiNPs possess such ultrasmall-size (<5 nm) because of the surface covered hydrophilic ligands with short chains (most –NH$_2$), which are favorable for in vivo bioapplications (NPs with hydrodynamic diameters smaller than 10.0 nm are found to be more rapidly and efficiently eliminated from mice through renal clearance).37

To characterize the surface groups of the modified 19FSiNPs, FTIR spectra of the 19FSiNPs, perfluoro-tert-butyl alcohol, trisodium citrate dihydrate and APS were further measured in our experiment, which featured several distinct absorption peaks in the range of 600–4000 cm$^{-1}$ (Fig. 1(e) and Fig. S2, ESI†). Typically, for perfluoro-tert-butyl alcohol (green line), the characteristic FTIR peaks for the –C(CF$_3$)$_3$ group are located at 1080, 1390–1440, 1580, 3000, and 3400 cm$^{-1}$. For APS (blue line), the strong FTIR absorbance peaks at 1080, 1390–1440, 1580, 3000, and 3400 cm$^{-1}$ are assigned to the vibrational stretches of Si–O bonding, C–O vibration, N–H bending vibrations, C–H vibration, and N–H stretching vibration, respectively. For the 19FSiNPs (red line), the sharp absorbance peak at 1080 cm$^{-1}$ is ascribed to the vibrational stretch of Si–O bonding, and the strong absorbances at 1580, 3000, and 3400 cm$^{-1}$ are assigned to N–H bending vibrations, C–H vibration, and the N–H stretching vibration, respectively. In particular, the weak absorbance peak at 1232 cm$^{-1}$ is ascribed to C–F vibration. The FTIR results demonstrated the existence of C–F bonds in 19FSiNPs. The EDX pattern confirms the presence of C, Si, N, O, and F elements in the 19FSiNPs (Fig. S3, ESI†). 1H and 13C NMR of the 19FSiNPs was further carried out to characterize the nanoparticles (Fig. S4 and S5, ESI†). X-ray photoelectron spectra (XPS) were also measured to analyze the chemical compositions of the 19FSiNPs compared to SiNPs (Fig. 1(f)). The results showed intense emissions at 102.26, 284.8, 399.07, and 531.87 eV, suggesting the presence of Si, C, N and O atoms respectively both in the 19FSiNPs and SiNPs. The emission at around 102 eV is routinely attributed to functionalized Si sub-oxides (Fig. S6, ESI†). In particular, there exists an extra emission at 688.13 eV in the XPS of the 19FSiNPs,
Optical and magnetic characterization of the 19FSiNPs

The absorption and photoluminescence emission spectra of the synthesized 19FSiNPs were measured (Fig. 2(a)), with predominant absorption in the UV region and the strongest emission in the blue region of visible light. The 19FSiNPs exhibited excellent water solubility and featured strong blue fluorescence under UV irradiation (quantum yield value is 16.1% against that of quinine sulfate as shown in Fig. S7, ESI†), which contributed to quantum confinement and radiative recombination of such small-sized nanoparticles. Of particular interest, undesired photobleaching of the 19FSiNPs did not occur over a wide range of pH values (4–10) in water and RPMI-1640 medium (Fig. S8, ESI†). The demonstrated high fluorescence intensity of the 19FSiNPs would be strongly favorable for bioimaging applications, where the loss of fluorescence because of photobleaching under acidic environments often hampers signal detection for in vitro cellular imaging. Additionally, the 19FSiNPs showed excellent storage stability at 4 °C over 40 days. The 19FSiNPs exhibited about 13% loss of PL intensity after 45 days of storage (Fig. S9(a), ESI†). DLS confirmed that the 19FSiNPs displayed slight aggregation after 45 days of storage as the hydrodynamic diameter increased slightly from 5.37 nm to 6.38 nm (Fig. S9(b), ESI†).

Afterwards, an 19F-NMR study on an aqueous solution of 19FSiNPs was carried out to verify their magnetic activity. As expected, the spectra exhibited a strong single peak at −75.34 ppm from the chemically and magnetically equivalent trifluoromethyl groups grafted on the surface of the 19FSiNPs (Fig. 2(b)), which is important to maximize the generated magnetic resonance signal. Because of the clear 19F-NMR signal, we then determined the longitudinal relaxation time T_1 and the transverse relaxation time T_2 of the 19FSiNPs. As we all know, T_1 and T_2 are both important contrast factors for MRI, because T_1 determines scanning time directly and the apparent intensity of the MRI signal depends on the T_2 values. The 19F compound must have favorable relaxation parameters. In general, this means a short T_2 and preferably a long T_2. The 19FSiNPs showed a T_1 of 1.5 s and a T_2 of 1.0 s tested on a 500 MHz Bruker spectrometer, which were found to be in the area of seconds and still promising enough for MRI data collection. Nuclear magnetic resonance (NMR) was used to assay the 19F content. Briefly, a mixture of 19FSiNPs and CF$_3$SO$_3$Na (as an NMR reference compound) was placed in an NMR tube, and a one-dimensional (1D) 19F spectrum was acquired on a 500 MHz spectrometer. The 19F spectra displayed two narrow major peaks, one each for 19FSiNPs and CF$_3$SO$_3$Na. The ratio of the integrated areas under these two peaks was used to calculate the mean amount of 19F grafted on the SiNPs. The weight ratio of fluorine grafted on the 19FSiNPs was calculated to be 1.52%, well in agreement with the results of XPS. It is noteworthy that the 19FSiNPs exhibited such excellent water solubility that they could be dissolved to a concentration of hundreds of milligrams per milliliter in water. To test the 19F-MRI sensitivities of the 19FSiNPs, 19F-MRI phantom experiments were then carried out as shown in Fig. 2(c): obvious 19F-MRI signals were observed from the 19FSiNP solution at different concentrations, and the signal intensity was found to be correlated with the concentration of fluorine (Fig. 2(d)), demonstrating the potential applications of commercial MRI imaging.
The RGD peptide has been widely used as a targeting ligand modified with functional species with targeting properties. Absorption spectra of the 19FSiNPs and 19FSiNPs-RGD revealed (Fig. S11, ESI†) that only the 19FSiNPs-RGD had an absorption peak at 275 nm (Fig. S12(a), ESI†) which was specifically associated with the RGD moiety, indicating the successful conjugation of 19FSiNPs and c(RGDyC). In addition, 1H NMR of the 19FSiNPs-RGD also showed the existence of RGD on the 19FSiNPs (Fig. S13 and S14, ESI†). The weight ratio of immobilized c(RGDyC) on the 19FSiNPs was calculated to be 7% according to the calibration curve. 19FSiNPs were then tagged with c(RGDyC) via an established reaction using sulfo-SMCC as a heterobifunctional cross-linker.39 As illustrated in Scheme 2, the 19FSiNPs were first combined with sulfo-SMCC to yield maleimide activated 19FSiNPs. The resultant maleimide-activated 19FSiNPs were further reacted with c(RGDyC) peptides, finally producing the RGD-conjugated fluorinated silicon nanoparticles (19FSiNPs-RGD).

After adequate removal of unreacted c(RGDyC) peptides (Fig. S10, ESI†), the hydrodynamic diameter of the 19FSiNPs-RGD was determined to be 10 nm with a PDI value of 0.24 (Fig. S11, ESI†) which was larger than that of the 19FSiNPs. The absorption spectra of the 19FSiNPs and 19FSiNPs-RGD revealed that only the 19FSiNPs-RGD had an absorption peak at 275 nm (Fig. S12(a), ESI†) which was specifically associated with the RGD moiety, indicating the successful conjugation of 19FSiNPs and c(RGDyC). In addition, 1H NMR of the 19FSiNPs-RGD also showed the existence of RGD on the 19FSiNPs (Fig. S13 and S14, ESI†). The weight ratio of immobilized c(RGDyC) on the 19FSiNPs was calculated to be 7% according to the calibration curve (Fig. S15, ESI†). In addition, the PL intensity of the 19FSiNPs-RGD was slightly stronger than that of the 19FSiNPs which was speculated to be derived from the different surface electronic states of the 19FSiNPs and 19FSiNPs-RGD (Fig. S12(b), ESI†).

Although SiNPs are generally known to be biocompatible and nontoxic, the in vitro toxicity of the 19FSiNPs and 19FSiNPs-RGD towards A549 and MCF-7 cells was evaluated by MTT assay. As shown in Fig. 3, the viability of A549 and MCF-7 cells was not affected by up to 2 mg mL⁻¹ of 19FSiNPs and the same concentration of 19FSiNPs-RGD (the corresponding UV absorption values at 335 nm was 0.8), indicating that the 19FSiNPs and 19FSiNPs-RGD were non- or low-cytotoxic to A549 cells and this ensured their use as a novel theranostic agent for further cell experiments and in vivo applications.

To further investigate the potential biomedical applications of the 19FSiNPs and 19FSiNPs-RGD, their uptake into specific cells was evaluated via fluorescence imaging and 19F-MRI. \(\alpha_v\beta_3\)-positive A549 and \(\alpha_v\beta_3\)-negative MCF-7 breast cancer cells were introduced to study the selectivity of the nanoconstruct. 19FSiNPs were then tagged with c(RGDyC) via an established reaction using sulfo-SMCC as a heterobifunctional cross-linker. 39 As illustrated in Scheme 2, the 19FSiNPs were first combined with sulfo-SMCC to yield maleimide activated 19FSiNPs. The resultant maleimide-activated 19FSiNPs were further reacted with c(RGDyC) peptides, finally producing the RGD-conjugated fluorinated silicon nanoparticles (19FSiNPs-RGD).

Lung cancer cell targeting

The application of 19FSiNPs for in vitro and in vivo targeted tumor imaging is vitally important in the biological and biomedical fields. For targeted bioimaging, 19FSiNPs must be modified with functional species with targeting properties. The RGD peptide has been widely used as a targeting ligand to mediate specific binding to cell adhesion molecule integrin \(\alpha_v\beta_3\), which is over expressed in many cancer cells (including carcinoma, sarcoma, glioblastoma and melanoma, etc.).38 To further investigate the potential biomedical applications of the 19FSiNPs and 19FSiNPs-RGD, their uptake into specific cells was evaluated via fluorescence imaging and 19F-MRI. \(\alpha_v\beta_3\)-positive A549 and \(\alpha_v\beta_3\)-negative MCF-7 breast cancer cells were introduced to study the selectivity of the nanoconstruct. 19FSiNPs were then tagged with c(RGDyC) via an established reaction using sulfo-SMCC as a heterobifunctional cross-linker. 39 As illustrated in Scheme 2, the 19FSiNPs were first combined with sulfo-SMCC to yield maleimide activated 19FSiNPs. The resultant maleimide-activated 19FSiNPs were further reacted with c(RGDyC) peptides, finally producing the RGD-conjugated fluorinated silicon nanoparticles (19FSiNPs-RGD).

After adequate removal of unreacted c(RGDyC) peptides (Fig. S10, ESI†), the hydrodynamic diameter of the 19FSiNPs-RGD was determined to be 10 nm with a PDI value of 0.24 (Fig. S11, ESI†) which was larger than that of the 19FSiNPs. The absorption spectra of the 19FSiNPs and 19FSiNPs-RGD revealed that only the 19FSiNPs-RGD had an absorption peak at 275 nm (Fig. S12(a), ESI†) which was specifically associated with the RGD moiety, indicating the successful conjugation of 19FSiNPs and c(RGDyC). In addition, 1H NMR of the 19FSiNPs-RGD also showed the existence of RGD on the 19FSiNPs (Fig. S13 and S14, ESI†). The weight ratio of immobilized c(RGDyC) on the 19FSiNPs was calculated to be 7% according to the calibration curve (Fig. S15, ESI†). In addition, the PL intensity of the 19FSiNPs-RGD was slightly stronger than that of the 19FSiNPs which was speculated to be derived from the different surface electronic states of the 19FSiNPs and 19FSiNPs-RGD (Fig. S12(b), ESI†).

Although SiNPs are generally known to be biocompatible and nontoxic, the in vitro toxicity of the 19FSiNPs and 19FSiNPs-RGD towards A549 and MCF-7 cells was evaluated by MTT assay. As shown in Fig. 3, the viability of A549 and MCF-7 cells was not affected by up to 2 mg mL⁻¹ of 19FSiNPs and the same concentration of 19FSiNPs-RGD (the corresponding UV absorption values at 335 nm was 0.8), indicating that the 19FSiNPs and 19FSiNPs-RGD were non- or low-cytotoxic to A549 cells and this ensured their use as a novel theranostic agent for further cell experiments and in vivo applications.

To further investigate the potential biomedical applications of the 19FSiNPs and 19FSiNPs-RGD, their uptake into specific cells was evaluated via fluorescence imaging and 19F-MRI. The time-dependent in vitro behavior of the nanoparticles in A549 and MCF-7 cells was investigated via focal laser scanning microscopy (CLSM) as shown in Fig. S16 (ESI†), and the results indicated that nanoparticles were gradually swallowed into cells and accumulated mainly in the cytoplasm. For A549 cells with a high integrin \(\alpha_v\beta_3\) expression, the fluorescence signal in the 19FSiNPs-RGD treated groups was much stronger than that of the pure 19FSiNPs treated groups (Fig. 4(a)), indicating the targeting effect of the peptide c(RGDyC). In contrast, for MCF-7 cells with a low integrin \(\alpha_v\beta_3\) expression, the observed blue fluorescence of 19FSiNPs-RGD was much weaker, even for incubation times up to 4 h. These data convincingly confirmed the high affinity and integrin \(\alpha_v\beta_3\)-specific binding of 19FSiNPs-RGD. The nanoparticle uptake by cells was also examined via 19F-MRI. After incubation with 19FSiNPs and 19FSiNPs-RGD, the A549 cell lysate was collected and transferred into a 10 mm NMR tube and 19F-MRI experiments were performed. Fig. 4(b) shows that 19F-MRI signals were observed from the A549 cells.
incubated with \(^{19}\text{FSiNPs-RGD}\), while no \(^{19}\text{F-MRI}\) signals were observed from the control group. These results demonstrated that \(^{19}\text{FSiNPs-RGD}\) could be used as a \(^{19}\text{F-MRI/FI}\) bimodal nanoprobe for targeted detection of A549 cancer cells.

In vivo \(^{19}\text{F-MRI and fluorescence imaging}\)

For future medical or biological applications, a key step is visualization of the synthesized agents in a biological environment. So we explored the possibility of *in vivo* \(^{19}\text{F-MRI/FI}\) studies by injecting \(^{19}\text{FSiNPs}\) into the tumors of the mice. Fig. 5(a) shows the in vivo fluorescence imaging of the \(^{19}\text{FSiNPs}\) (10 mg mL\(^{-1}\)) in a A549 tumor bearing mouse. Bright fluorescence in the tumor area was observed, indicating the strong fluorescence intensity of the \(^{19}\text{FSiNPs}\), which contribute to the quantum confinement effect. Furthermore, \(^{1}\text{H-MRI}\) (Fig. 5(b)) was carried out to show the anatomic structure of the mouse and the profile of the tumor. As expected, a distinct difference can be observed in the \(^{19}\text{F-MR}\) images after intratumor injection of \(^{19}\text{FSiNPs}\) \((C_F = 650 \text{ mM})\). Fluorine inside the tumor yields positive-signal “hot-spot” images, with no background signal due to the low biological abundance of fluorine in tissues. These results highlight the intrinsic sensitivity and utility of \(^{19}\text{FSiNPs}\) for *in vivo* \(^{19}\text{F-MRI}\) and fluorescence imaging of the tumor. To investigate the influence of \(^{19}\text{FSiNPs}\) on the organs of mice, a histopathological examination was performed using the standard histological techniques *via* hematoxylin-eosin (HE) staining in the major organs (heart, liver, spleen, lungs, and kidneys). As illustrated in Fig. 5(c), compared with the control group, there were no significant differences between various organs, indicating that the \(^{19}\text{FSiNPs}\) had a negligible toxic effect on the mice.

Conclusions

In summary, a novel formulation of \(^{19}\text{FSiNPs}\) with strong fluorescence, high \(^{19}\text{F-MRI}\) sensitivity, favorable biocompatibility and excellent aqueous solubility has been successfully developed through a one-pot microwave synthesis strategy. The targeted dual \(^{19}\text{F-MRI/FI}\) imaging study of A549 cells was also achieved by grafting specific biological moieties such as peptides onto these nanoparticles. The high quality fluorescence of the \(^{19}\text{FSiNPs}\) originating from the nano-sized quantum effect also enabled the *in vivo* fluorescence imaging of tumors. In addition, the modified microwave assisted synthetic strategy abandons tedious and complicated manipulations required for synthesizing perfluorocarbon nano-emulsions. Since the prepared \(^{19}\text{FSiNPs}\) suffer the drawback of it’s short wavelength fluorescence and relatively long longitudinal relaxation times \((T1)\) which necessitated long scanning times, \(^{19}\text{FSiNPs}\) were used for *in vivo* experiments by intratumor injection. The \(^{19}\text{FSiNPs}\) exhibited such excellent water solubility that they can be dissolved to a concentration of hundreds of milligrams per milliliter in water, which ensures enough fluorine content for *in vivo* \(^{19}\text{F-MRI}\) detection of the tumor. The high quality fluorescence of \(^{19}\text{FSiNPs}\) originating from the nano-sized quantum effect also enabled the *in vivo* fluorescence imaging of tumor. For *in vivo* \(^{19}\text{F-MRI}\), there remains room to increase the fluorine contents and optimize the relaxation time of nanoparticles. On the other hand, efforts to engineer a longer wavelength fluorescent species as fluorinated scaffold is also of quite importance and could be studied further. Consequently, the present aqueous synthesis of high-quality \(^{19}\text{FSiNPs}\) would facilitate a myriad of applications such as in biosensors, *in vitro* and *in vivo* imaging, etc.

Conflicts of interest

The authors have declared that no competing interest exists.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21575157, 81227902, 81625011), National Key R&D Program of China (2017YFA0505400, 2016YFC1304700) and...
Key Research Program of Frontier Sciences, CAS, Grant No QYZDY-SSW-SLH018. X. Zhou thanks the National Program for Special Support of Eminent Professionals (National Program for Support of Top-notch Young Professionals).

Notes and references

2. Z. Gao, T. Ma, E. Zhao, D. Docter, W. Yang, R. H. Stauber and M. Gao, Small, 2016, 12, 556.