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k-Space-Based Enhancement of Pulmonary
Hyperpolarized 129Xe Ventilation Images
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Abstract— Hyperpolarized (HP) noble gas (e.g., 3He/129Xe)
MR images are susceptible to noise and artifacts due to the
rapid attenuation of nonrenewable HP magnetization along
with the scan time. However, a little attention is paid to this
issue through postprocessing techniques. Here, a k-space-based
analysis method is proposed to improve the overall signal-to-noise
ratio (SNR) and lessen the blurring of pulmonary HP 129Xe
ventilation images. This method performs k-space weighting
using low-frequency boost and a high-frequency modulation
which offsets the magnetization loss per excitation, and then
integrates two outputs in image domain through a convex
combination model. Furthermore, a nonreference quality metric,
called second-derivative measure of improvement by entropy
(SMIE), is introduced to assess the image quality of HP gas
MRI. The simulation results demonstrate that the enhanced
images are statistically significantly different to the original
ones regarding the SNR, peak SNR, structural similarity, and
SMIE (each P-value is less than 0.0001). In vivo results indicate
that the proposed method significantly upsets the SNR and
SMIE in human pulmonary HP 129Xe ventilation images (all
P-values are less than 0.05), while maintaining the appearance
of ventilation defects or fine structures. In this case, the proposed
scheme has potential for improving the understandability and/or
differentiation of regions of interest in the lung.

Index Terms— 129Xe, hyperpolarized (HP) gas, image enhance-
ment, k-space, magnetic resonance imaging.

I. INTRODUCTION

LUNG cancer was accounted for 17.09% of all new
cancers and 21.68% of all cancer deaths in 2015 in China,

which indicates that lung cancer is the most common incident
cancer and the leading cause of cancer death in China [1].
Inadequate prevention, few screening chances, and lack of
early diagnosis are the major causes of high incidence and low
five-year survival rate [2]. Accordingly, early detection and
diagnosis are crucial to decreasing cancer mortality, especially

Manuscript received June 11, 2018; revised September 21, 2018; accepted
November 5, 2018. Date of publication January 17, 2019; date of current
version September 13, 2019. This work was supported in part by the National
Natural Science Foundation of China under Grant 81771917, Grant 61471355,
Grant 81625011, and Grant 81227902, in part by the National Key Research
and Development Program of China under Grant 2016YFC1304700, and in
part by the Key Research Program of Frontier Sciences, CAS, under Grant
QYZDY-SSW-SLH018. The work of X. Zhou was supported by the National
Program for Support of Eminent Professionals (National Program for Support
of Top-Notch Young Professionals). The Associate Editor coordinating the
review process was Huang-Chen Lee. (Corresponding author: Xin Zhou.)

The authors are with the State Key Laboratory of Magnetic Resonance and
Atomic and Molecular Physics, National Center for Magnetic Resonance in
Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of
Sciences—Wuhan National Laboratory for Optoelectronics, Wuhan 430071,
China (e-mail: xinzhou@wipm.ac.cn).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIM.2018.2886097

for stage-I lung cancer [2]. At present, pulmonary function
tests (PFTs), chest X-rays, and computed tomography (CT)
are the most commonly used techniques for pulmonary dis-
ease diagnosis. Nevertheless, such techniques are incapable
of offering overall lung microstructure parameters, and/or
local-regional gas–gas/gas–blood exchange functions [3]. Nev-
ertheless, early signs of pulmonary diseases are characterized
by the changes in lung functions [4]. Moreover, both the
chest X-rays and CT are limited by the radiation of X-ray.
Consequently, there is a strong demand to move beyond form
to function in lung imaging.

Hyperpolarized (HP) noble gasses (e.g., 129Xe or 3He) MRI
is a powerful noninvasive facility for quantitatively discerning
lung structures and gas-exchange functions [5]–[10]. Using
HP gasses, MR signals in the airspaces of the lung are
amplified up to 103–105 times above the thermal equilibrium
levels, which makes imaging of lung ventilation or diffusion
possible [11]. Howbeit, such nonequilibrium polarization is
nonrenewable, which leads to the rapid attenuation of available
HP magnetization along with each excitation pulse [12].
Thus, it is difficult to simultaneously obtain high signal-to-
noise ratio (SNR) and spatial resolution of HP MR images.
Moreover, the magnetic susceptibility artifacts at the air–tissue
interfaces and motion artifacts because of the respiration and
cardiovascular pulsation potentially distort and degenerate HP
images [10]. In addition to the above factors, the limitations of
MRI hardware systems (such as inhomogeneity of magnetic
field and coil sensitivity) and unavoidable diverse kinds of
noise (e.g., signal-dependent and non-Gaussian noise) further
deteriorate the image quality. Accordingly, HP gas MR images
potentially have heavy noise, artifacts, low resolution, or poor
contrast, which brings great difficulties in diagnosing lung
diseases. Accurate or precise diagnoses need smart strategies
to enhance the quality of images.

Up to date, the techniques to improve HP gas MR
images are roughly classified into two categories. The first
focuses on the hardware updates [10], such as the devel-
opment of the polarizer and the use of multichannel coils.
Nevertheless, the continued improvements in polarization lev-
els and available volumes per unit time need innovations
in hardware/software configurations. The second category
takes into account the reformations of the signal acquisi-
tion speed, e.g., the usage of fast pulse sequences, par-
allel imaging [12], small-angle excitation [13], along with
undersampling strategies [14], aiming to acquire more data or
shorten breath holding time [4]. Nevertheless, the breath-hold
imaging of HP gas faces unique challenges that can ultimately
achieve different acquisition tactics [15]. In general, the above
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pay little attention to the use of postprocessing methods (such
as image denoising or enhancement), although such algorithms
are generally adopted to improve the image quality in the
MR field [16]–[18]. Thus, we take into account the use of
postprocessing algorithms, aiming to improve the visualization
of regions of interest (ROIs) in pulmonary HP 129Xe MR
images (including SNR and fine-structural details of the lung)
without impacting the acquisition process or hardware costs.

An image signal could be thought of as a sum of a
distortion-free reference signal and an error signal. Fewer
errors result in a higher quality image. There are a lot
of simple and well-studied postprocessing algorithms to
improve the image quality (or lessen error signals), e.g.,
the median filtering (MDF), block-matching and 3-D filtering
(BM3D) [19], fast iterative shrinkage and/or thresholding
filtering (FISF) [20], fast bilateral filtering (FBF) [21], and
trilateral filtering [22]. The MDF technique is known due to
its outstanding performance at removing salt and pepper noise,
while its usage is hindered by the algorithmic complexity,
nonlinearity, and nonseparability [23]. The BM3D generates
the state-of-the-art performance in denoising. Nevertheless,
many parameters are included in BM3D, and it will be difficult
to find optimal ones. The FISF basically considers the local
correlation among image pixels for denoising or deblurring
problems [24], while neglecting the sparsity of signals. The
FBF strategy is an edge-preserving diffusion filtering tool, but
the computational complexity depends on its filtering kernel
size [21]. Different from the above algorithms (performed
in image domain rather than frequency domain), apodization
(or line broadening) simplifies the spectrum for improving
the visualization of resonances while filtering high-frequency
noise [25], which is usually achieved with a Lorentzian
function for the k-space center and the Gaussian function for
the edges. Nevertheless, this smoothes noise, while does so at
the expense of creating wider signals [26].

Since MR signals are sampled during the usage of the
magnetic encoding gradient, it involves the spatial-frequency
distribution (viz., k-space) of the sample. The k-space cen-
ter comprises low spatial-frequency information of the sam-
ple and determines the overall SNR and contrast of the
image [27]. On the other hand, high spatial-frequency compo-
nents acquired further away from the k-space center contribute
to the image edges, details, and/or sharpness. The actual HP
MR image information is achieved using the fast Fourier
transform (FFT) of the sampled data, as shown in Fig. 1.
It can be seen that the image SNR and contrast depend upon
the signal magnitude in the low spatial-frequency regions of
the k-space [see Fig. 1(b)], but the resolution is related to the
maximum spatial-frequency gained [see Fig. 1(c)]. Howbeit,
a little attention is paid to the enhancement of HP gas MR
images according to these k-space properties.

This paper is concentrated on the k-space analysis for
postprocessing pulmonary HP MR images (centric the Carte-
sian rather than radial or spiral acquisition). We find that
original k-space could reproduce the raw data if multiplied
by a weighting (or coefficient) matrix (all weights in this case
are: 1) if we amplify the weights in the low spatial-frequency
region of k-space (viz., the k-space center), an SNR-weighted

Fig. 1. One slice of the pulmonary HP 129Xe images (upper) of a
COPD patient (female, age 56, scanned by 1.5 T · S) and their associated
k-space data (lower). (a) Full data set. (b) k-space center contains low spatial
frequencies, determining the overall image contrast, brightness, and general
shapes. (c) k-space periphery comprises high spatial frequencies, dominating
image edge, details, and sharp transitions. (d) Narrow k-space band provides
high resolution along its length and low resolution perpendicular or along its
width.

result will be obtained. Similarly, the adjustment of weights in
the periphery of k-space yields a resolution-weighted result.
Different from line broadening, these are separately performed
in the k-space domain. After that, an enhanced result is
achieved by fusing the SNR- and resolution-weighted results
(in the image domain), manipulating the tradeoff between
the SNR and fine details. With these considerations in mind,
we construct a novel k-space-based enhancement method
through the k-space manipulations (k-space weighting matri-
ces) to visually enhance the pulmonary HP gasses ventilation
images. This is straightforward and easily implemented, with-
out additional cost and/or preparation. Furthermore, owing to
the absence of reference image, we introduce a new blind
quality metric of HP MR image, namely, second-derivative
measure of improvement by entropy (SMIE). The performance
of the proposed algorithm is demonstrated by simulation and in
vivo experimental results and is quantitatively evaluated using
the SNR and SMIE terms. Besides, the effects of the pro-
posed method are validated by the comparisons with baseline
filtering algorithms regarding noise and artifact reduction and
fine-structural preservation.

The rest of this paper is organized as follows. In Section II,
we explain the k-space-based enhancement method of HP gas
images in detail. In Section III, we give extensive experimental
results and discussions. Conclusion and perspectives are given
in Section IV.

II. ENHANCEMENT OF PULMONARY HP GAS MR IMAGE

In this section, we describe a scheme for postprocessing
HP 129Xe MR images with the aim of increasing the overall
SNR as well as lessening image blurring caused by the decay
of HP magnetization over time owing to repeated radio fre-
quency (RF) excitation. This scheme decomposes k-space data
into low-/high-frequency components, then adopts different
k-space weighting matrices to improve either SNR or reso-
lution of HP gas images (Fourier linear filtering in effect: the
SNR improvement by high weighting in the k-space center
while resolution improvement from high weighting in the
k-space periphery). After that, the two output results are
integrated through fusion operators in image domain.
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A. SNR Improvement

SNR and resolution are the key parameters to quantitatively
evaluate MR images. Usually, increasing the scanning time in
MR imaging can improve the SNR, resolution, or both [28],
but this does not work in HP gas MRI due to the nonrenewa-
bility of HP magnetization [13]. In fact, the set of MR signals
used to fill k-space are discretely sampled, and then constructs
a finite k-space matrix. Once given the matrix, the SNR
and resolution are subsequently determined. If raw sampled
data are properly regulated without boosting/generating arti-
facts/noise, the SNR and fine structures of the lung are possi-
bly improved to fulfil, especially requirements in applications.
This can be done through specific weighting matrices. Assume
that a raw k-space matrix S is multiplied by a weighting matrix
C , that is,

K = S � C (1)

where K denotes the regenerative k-space data, and � denotes
the element-wise (Hadamard) product. The matrices K , C ,
and S have the same dimensions. If C is a matrix of ones,
K is equal to S. For specific applications, the designation of
elements in the weighting matrix is an important issue.

As stated previously, the image SNR of HP MRI depends
on the signal magnitude in the k-space center [13]. Suppose
(u0, v0) is a middle point in a given k-space, the central region
could be defined as

� = {(u, v)|max(|u − u0|, |v − v0|) ≤ h} (2)

where h is a positive integer that regulates the window size.
The trajectory of points in � is a square. If we expect the data
in the central region to be magnified, without impacting other
points (viz., high weighting in the k-space center), a coefficient
matrix C1 is founded as follows:

C1 =
{

β, if (u, v) ∈ �

1, else
(3)

where β is a constant (usually greater than 1). After that,
(1) becomes K1 = S � C1. After FFT, an image f1(x, y)
is constructed by the following formula:

f1(x, y) = 1

N M

N−1∑
u=0

M−1∑
v=0

K1(u, v)e j2π(ux/N+vy/M)

= 1

N M

⎡
⎣ ∑

(u,v)∈�

βS(u, v)e j2π( ux
N + vy

M )

+
∑

(u,v)/∈�

βS(u, v)e j2π( ux
N + vy

M )

⎤
⎦

= 1

N M

⎡
⎣ ∑

(u,v)∈�

β|S(u, v)|e j2π( ux
N + vy

M −φ)

+
∑

(u,v)/∈�

β|S(u, v)|e j2π( ux
N + vy

M −ϕ)

⎤
⎦ (4)

where the size of the k-space matrix is N × M . In this case,
the signal magnitudes inside the k-space center are amplified

by β times, without impacting high spatial-frequency data.
Since the noise distribution of an MR image is Rician (values
cannot be less than 0), we adopt the following formula to
calculate SNR:

SNR = mean(Signal) − mean(Noise)

stdev(Noise)
(5)

where stdev denotes the standard deviation. In this case, (5)
would account for the increasing of noise floor across the
entire image. Therefore, the mean signal intensity ascends,
while the mean and stdev of noise change slightly although
boosting the low spatial-frequency components also possibly
amplifies low spatial-frequency noise. This raises SNR values.

In SNR calculation, signal regions are determined through
an iterative threshold [29], and noise voxels are sampled from
all regions of the image outside of the lung. If the parameter
in (3) is given, the window size will be related to SNR of MR
images. (The weighting matrix is an array of 1’s except for a
square of side length 2h). We rewrite (3) as follows:

C1 = C2 + 1, where C2(u, v) =
{

β − 1, if (u, v) ∈ �

0, else

(6)

where C2 is a rectangle function, and 1 is a matrix of 1’s.
Then, (1) turns into K1 = S � C2 + S. In MRI, the field
of view (FOV) and the spacing between the samples (i.e.,
k) in the k-space are in inverse proportion, specifically,
�k = 1/FOV. This relationship keeps between the pixel
width (�ω) and the range between the highest positive and
negative spatial frequencies of k-space (denoted by kFOV).
The expression S � C2 is considered that the data sampling
rate and spacing remain the same, reducing kFOV by a factor
(a function of h). For example, if the factor is set to 1/4, with
this k-space multiplication, FOV stays the same, but the pixel
width has been tripled from 1 to 4 mm. The larger pixel size
could yield lower spatial resolution of image. In this case,
the multiplying of the window function [e.g., (3)] will lose
resolution of an image, which is hard to retrieve in practice.
Therefore, the window function is a tradeoff between SNR
and resolution improvements.

B. Resolution Improvement

Since C1 could be seen as a window (rectangle) function,
the multiplying of a rectangle function in the k-space will
definitely lose image resolution. In addition, the centric-phase-
encoding strategy can cause a loss of high spatial-frequency
information because of rapid depletion of nonrenewable HP
magnetization [27]. To offset such loss, a weighting matrix
whose periphery has large weights is founded (that is, high
weighting along the k-space periphery). Suppose that the size
of the k-space matrix is N×M(where N is along the frequency
encoding direction while M is along the phase-encoding
direction), the coefficient matrix C3 is defined as

C3(r, :) =
{

cos−2(M/2−r)θ, if r ∈ [1, M/2]

cos−2(r−M/2)+1θ, else
(7)
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where r is the index of the phase-encoding direction, and
θ is within the interval [2°, 10°]. As distinct from matrix
C1, the weights in the periphery of C3 are greater than 1,
while in the central lines are almost 1. Hence, (1) turns into
K2 = S � C3, whose aim is to compensate for the flip angle
and decay losses across phase encodes. Nevertheless, matrix
C3 magnifies the signal intensities of the edge but amplifies
some disadvantages (e.g., artifacts and noise) at the same time.
Furthermore, the choice of weighting enhancement over a box
possibly introduces ringing artifacts. Thus, we use BM3D [19]
to eliminate unfavorable factors. After FFT, a resolution-
weighted image is obtained.

To select an appropriate parameter in (7), a local contrast
metric (LCM) is defined as

LCMk = −20 · log

(
1 − 2

qk + 1

)

where

qk = J k
max−J k

min

J k
max+J k

min

(8)

where the image is divided into k nonoverlapping blocks, and
J k

max and J k
min are the maximum and minimum intensities of

the kth block. The average of LCM is calculated. For the
sixth and seventh slices of pulmonary HP 129Xe images of
the chronic obstructive pulmonary disease (COPD) subject,
the curves of average LCM under different thetas are shown
in Fig. 2(a) and (b), where the number of blocks is 100, and
theta is in the internal (2°, 42°). It can be found that the curves
have large value in the range of 2°–10°, declines rapidly in
an interval [10°, 15°], and then keeps relatively steady low
levels in other scopes. This phenomenon possibly has to do
with some characters of an image (e.g., visual quality). The
respective resolution-weighted images of the seventh slice of
the lung are shown in Fig. 2(c)–(e), when θ in (7) is set to
7°, 12°, and 17°. It can be found that the degree of residual
noise and artifacts is involved in the average LCM values
(in the inverse ratio). Low value possibly results in heavy
noise and/or artifacts, especially for Fig. 2(e), where the lung
signals are concealed by the heavy noise and artifacts. This
may supply guidance in selecting parameter θ in (7). For
example, we utilize the maximum of average LCM that defines
an optimum of parameter θ or other reasonable strategies [such
as θ could be set to arctan(sqrt(1/(M − 1))), where M denotes
the total number of excitation].

C. Fusion

From the above, SNR-weighted results improve the SNR
and coarse features while sacrificing fine details [see Fig. 3(a)].
On the other hand, resolution-weighted results are able to
highlight fine features of ROIs [see Fig. 3(b)]. If the weighting
functions are applied in k-space simultaneously, and 2-D FFT
is performed only once, the SNR and structural details are
potentially poorer than the original [see Fig. 3(d)]. Conse-
quently, we perform the fusion in image domain, that is, SNR-
and resolution-weighted results are integrated to achieve an

Fig. 2. (a) and (b) For the sixth and seventh slices of the COPD
subject, the changing curve of average LCM under diverse theta values.
(c)–(e) Resolution-weighted images of the seventh slice of the lung, when
parameter θ in (7) is set to 7°, 12°, and 17°, respectively.

Fig. 3. For Fig. 1(a), the comparison by separately or simultaneously
weighting the center and edges of k-space. (a)–(c) SNR-weighted, resolution-
weighted, and enhanced results obtained using (3), (7), and (9), respectively.
(d) Reconstructed result by manipulating the weighting of the center and edges
of k-space simultaneously.

enhanced result F [see Fig. 3(c)], that is,

F(m, n) = α · F1(m, n)

|F1|max
⊕ (1 − α) · F2(m, n)

|F2|max
(9)

where F1 and F2 are the SNR- and resolution-weighted results,
|F1|max and |F2|max are the corresponding maximum absolute
values, ⊕ is the element-wise (arithmetic) addition, and α is
the scaling factor, respectively.

The convex combination model presents a tradeoff between
the overall SNR and fine details of images. We seek an optimal
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value of scalar parameter, which combines those correspond-
ing to abundant local features. Since local entropy represents
the local information contained in a patch (or characterizes
topographic features of an image), we choose an optimum α
that results in the minimum variation of local entropy values
across patches. Let Ut (α) be the local entropy of the t th patch
(�t ) of an enhanced result obtained through (9), and Ū(α)
is the average value of local entropy across all patches. The
optimum α is searched by settling the following optimization
problem, which could be solved numerically:

α∗ = arg min0≤α≤1

∑
t

(Ut (α) − U(α))2

where

Ut (α) = −
∑

si∈�t

p(si )logp(si ) (10)

where p(si ) is the probability distribution at the point s with
the i th intensity level.

D. Nonreference Metric

Most objective/quantitative metrics of the image qual-
ity require a reference (viz., distortion free) image that is
assumed to have perfect quality [29]. However, such metrics
is unsuitable for HP gas MRI owing to the lack of reference
image. Nevertheless, nonreference or blind quality criterion is
absent for quantitatively evaluating HP gas MR image. Thus,
we introduce a novel blind quality metric (SMIE) to evaluate
the image quality of HP MRI, which is derived from the
concept of the second-derivative-like visibility operator and
virtues of some earlier reviewed indexes [31]–[33]. The SMIE
is defined as

SMIEs×t = − 1

s × t

s∑
x=1

t∑
y=1

ωρωlnρ

where ρ = |Imax − 2Imed + Imin|
|Imax + 2Imed + Imin| (11)

where an image I is divided into the sequential s × t
blocks. (Each block has the same size. In this paper, we set
s = t = 10.) Imax, Imed, and Imin are the maximum,
median, and minimum intensities in every block, and ω
is a positive constant. After that, the average of measure-
ment results of all blocks in the entire image is calcu-
lated as a quality measure. For the kth block, I k

med �= 1/
2(I k

max + I k
min) because of the SMIE definition, therefore,

the blocks with I k
med = 1/2(I k

max + I k
min) are abandoned when

computing the SMIE of an image (because the SMIE value
will approach infinity). If I k

med = 0 for all blocks, the minimal
SMIE value is 0.

Since I k
max, I k

med, and I k
min in (11) are not less than 0,

the variable ρ is within the range of [0, 1]. Considering a
function

f (ρ) =
∫

h(ρ)dρ, where h(ρ) = −ωρωlnρ. (12)

The first derivative of h(ρ) is g(ρ) = −ωρω −1 (ω ln ρ + 1).
Suppose that ρ0 = e−1/ω, then g(ρ) > 0, if ρ ∈ (0, ρ0) and

g(ρ) < 0, if ρ ∈ (ρ0, 1). Thus, [ρ0, f (ρ0)] is an inflection
point of the function f (ρ). If 0 < ω ≤ 1, the function
h(ρ) rapidly reaches the maximum 1/ωe, and then decreases
to 0 at relatively slow speed. On the other hand, if ω > 1,
the function h(ρ) slowly expands to the maximum, and then
slowly decreases to the minimum. The properties offer the
instruction on reasonably choosing parameter ω in (11). For
example, in order to avoid confusion (different values of ρ
may result in the same function value), parameter ω could be
reasonably selected in the range of 0–0.5 (or smaller range)
in specific applications, such as ω = 0.2 in this paper.

III. EXPERIMENTAL RESULTS

In this section, we first introduce simulation and in vivo data
and baseline methods (e.g., current state-of-the-art denoiser)
for comparisons. After that, we use experimental results to test
the effectiveness and practicality of the proposed algorithm.

A. Data and Baseline Methods

Simulations are adopted to justify the relevance of SMIE
and SNR as reference-free metrics of image quality, and to
validate the effects of the proposed method in a simulated
environment. The k-space signal acquired by proton (1H) MRI
can be used to approximately simulate the k-space data of HP
gas MRI with a constant-flip-angle scheme [13]. That is,

Â(p, q) = A(p, q) · cosp−1 τ sin τ + An (13)

where A and Â denote the original 1H and simulated HP
k-space data, An denotes the additive Gaussian noise, ( p, q)
denotes the spatial pixel index, and τ denotes the small flip
angle, respectively. The 1H k-space data of a water phantom
acquired on the 1.5 T whole-body MRI Scanner (Avanto,
Siemens Medical Solutions) is used to approximately produce
the k-space data of HP MRI. The imaging parameters of the
phantom were: echo time (TE) = 9.8 ms, TR = 20.0 ms,
bandwidth (BW) = 3.2 kHz, matrix size (MS) = 320 × 320,
FOV = 52 × 52 mm2, slick thickness (ST) = 20 mm, and 2-D
FLASH sequence. This work had done 100 times (the angle τ
was selected as 8°), resulting in the k-space data with a size
of 320 × 320 × 100.

After that, human HP 129Xe ventilation images are tested to
demonstrate the performance of the proposed algorithm with
respect to the improvement of SNR and SMIE, but maintaining
the appearance of fine structures and ventilation defects. Three
healthy volunteers (average age, 24 years), two patients with
asthma (34 years) or COPD (56 years) were enrolled for
HP 129Xe MRI experiments after provided informed consents.
All experiments were approved by the Institutional Review
Board, Wuhan Institute of Physics and Mathematics, Chinese
Academy of Sciences, Wuhan, China. Experiments were per-
formed on a 1.5-T scanner (Siemens) using a homebuilt
transmit–receive vest RF coil. Enriched xenon was polarized
using the spin-exchange optical pumping with a “freeze-out”
accumulation procedure in a cold finger and a home-built
xenon polarizer. The polarizer was equipped with a 75-W
narrow width laser array working in the continuous-flow mode.
The source gas mixture consisted of 1% enriched xenon
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Fig. 4. Comparison images of the water phantom through three different
steps. (a) Original 1H k-space of one scan is used to simulate (d) HP
k-space data. (b) Average 1H k-space and (c) corresponding reconstructed
image are shown as references. Step 1: (e) Relationship between hs and
average SNR of SNR-weighted images when β is set to 2, where red
arrow denotes an optimal h for maximum SNR (where Ny is the image
size). (f) Weighted k-space and (g) SNR-weighted image are constructed.
Step 2: (d) Simulated raw k-space is multiplied by (h) weighting matrix using
high-frequency modulation, aiming to improve the image resolution. After the
FFT followed by BM3D filtering, (j) resolution-weighted image is obtained.
Step 3: (g) and (j) Integrating images and (k) enhanced result are achieved.

(86% 129-isotope), 89% 4He, and 10% N2. Then, the HP gas
was extracted into a Tedlar bag from the cold finger just before
HP experiments. The available polarization in the bag was
approximately 10%–15%. A 500-mL HP xenon and 500-mL
medical grade N2 were mixed to a 1-L gas mixture.

The MRI parameters for the healthy volunteers were:
TE = 2.7 ms, TR = 6.8 ms, MS = 128 × 128, FOV =
400 × 400 mm2, ST = 20 mm, BW = 25.6 kHz, number of
slices (NS) = 7, total scan time (TST) = 6.05 s, 2-D bSSFP
sequence, constant flip angle [the angle was 70°], and linear
encoding. Different from the healthy volunteers, the flip angle
used in the asthmatic subject was 50°, while other parameters
were the same. For the COPD subject, the NS was 8, TST
was 6.92 s, and other imaging parameters remained constant.
After the acquisition of the simulated and in vivo k-space,
the raw data were used to test the proposed method regarding
the improvement of image quality. All the groups of data were
processed in MATLAB.

Since the proposed k-space weighting metrics belong to the
Fourier filtering in effect, we chose some widely used filtering
techniques as the baseline methods for comparisons, such as
MDF, BM3D [19], FISF [20], and FBF [21]. These algorithms
could effectively yield better image quality (e.g., denoising
or restoration) in the image domain. A two-tailed Student’s
t-test (two-sample comparison of mean) was performed for
statistical comparisons of quantitative metrics (e.g., SNR or
SMIE), and a P-value < 0.05 was considered as statistically
significant.

B. Simulation

For the water phantom, Fig. 4(c) shows the 1H MR image,
and its k-space is shown in Fig. 4(b), with 100 averages.

This 1H image is considered to possess high image quality
(e.g., high SNR and resolution), and is regarded as the ground
truth (viz., reference image in this section). Based on (13),
the raw 1H k-space of each scan [e.g., Fig. 4(a)] is applied
to simulate HP k-space data [e.g., Fig. 4(d)]. This generates
100 groups of simulated k-space data. After that, the simulated
data are utilized to generate SNR-weighted images (through
Step 1), resolution-weighted images (through Step 2), and
fused results (through Step 3), as shown in Fig. 4.

In Step 1, we search an optimal value of h to maximize
the image SNR. We construct the relationship between hs
and average SNR of SNR-weighted images (a total of 100)
when β is set to 2, as shown in Fig. 4(e). When calculating
SNR, the reference image is segmented through an iterative
threshold [29], to yield signal regions, and the residue is
simply selected as noise areas, as shown in Fig. 4(e). The
segmentation threshold is calculated once for the reference
image and applied to define the boundary for the modified
images. In this case, the signal and noise areas keep the same
for different hs or SNR-weighted images. Hence, we obtain
an optimized weighted k-space [e.g., Fig. 4(f)]. After FFT,
an SNR-weighted image is obtained [e.g., Fig. 4(g)]. In Step 2,
the simulated k-space data [e.g., Fig. 4(d)] are multiplied
by other weighting matrix [e.g., Fig. 4(h)] whose periph-
ery has high weighting values, to produce a new k-space
[e.g., Fig. 4(i)]. Via FFT and BM3D, a resolution-weighted
image is produced [e.g., Fig. 4(j)]. In Step 3, the SNR- and
resolution-weighted images are fused to generate an enhanced
result [e.g., Fig. 4(k)]. Compared with the reference image,
the image (k) holds high SNR and accuracy.

The raw 1H k-space data of the water phantom generate
100 groups of simulated HP images (denoted by the origi-
nal images). Through the proposed postprocessing algorithm,
100 groups of enhanced results are thereupon produced. It is
known that a digital image is vulnerable to a wide variety of
distortions during the processing, storage, and reproduction,
any of which possibly causes a degradation of visual quality.
It is necessary to pursue objective image quality metrics
to efficiently monitor, judge, or adjust the image quality in
applications [31]. The common full-reference quality metric is
peak SNR (PSNR) [34], which owns clear physical meanings.
Structural similarity (SSIM) [24] is a general quality index to
measure the similarity between the reference and processed
images. Since there exists a reference image [viz., Fig. 4(c)],
we use PSNR and SSIM to evaluate the quality of the original
and improved images. Moreover, SNR and SMIE are seen as
the two blind image quality criteria.

The upper row in Fig. 5 displays the PSNR, SSIM, SNR,
and SMIE comparisons of images without and with the k-space
weighting, and the statistical analyses are shown in the lower
row. We can see from Fig. 5 that the P-value in any com-
parison is less than 0.0001. This suggests that the improved
results are statistically significantly different from the original
images in PSNR, SSIM, SNR, and SMIE terms. Moreover,
we can see that the evaluation results using SMIE term are
consistent with that using two full-reference quality metrics.
Consequently, SMIE can be taken as a quantitative measure
of image quality improvement provided by the proposed
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Fig. 5. (a)–(d) PSNR, SSIM, SNR, and SMIE comparisons between the
original images and enhanced images obtained using the proposed method
for the water phantom (upper), respectively, and their statistical analyses
(lower), where original images are artificially synthesized HP images. In SSIM
comparisons, the original and modified images are compared with Fig. 4(c)
(reference image) rather than the original ones.

postprocessing algorithm. Large SMIE value means a good
quality of HP gas images. We can also find that the standard
deviation (SD) of all metrics for every increase fluctuates
significantly, even when comparing the SD as a percentage
of the mean. This means that the proposed k-space weighting
way possibly creates much uncertainty and a large distribution
of the voxel intensities despite the improved image quality.
Probable causes are that the proposed method amplifies the
local contrast in the MR images, which expands the range of
voxel intensities.

C. In Vivo

The k-space center represents the coarse features of MR
image, while its periphery represents fine structures. When the
weights of the k-space data are modulated through different
coefficient matrices, the coarse or fine characteristics can
be adjusted. This is useful to extract ROIs. For a healthy
volunteer, Fig. 6 shows one slice of pulmonary HP 129Xe
MR images and filtered results obtained using different meth-
ods, where red arrows denote the fine structures (such as
the trachea or vascular areas). It can be seen that massive
artifacts and noise impact the visual quality of the original
image [see Fig. 6(a)]. However, through our algorithm, those
disadvantages are effectively eliminated, and the overall SNR
is increased and fine details are highlighted [see Fig. 6(f)].

Unlike a photograph, CT or X-ray, the contrast in HP gas
MR images comes from the microscopic magnetic properties,
such as spin density, susceptibility, or partial pressure of
HP gasses. This causes some changes of homogeneity or
inhomogeneity in ventilated regions (even ventilation defects)
after the proposed method. Because there are no ventilation

Fig. 6. One slice of the pulmonary HP 129Xe MR images of a healthy
volunteer (Healthy 1 shown in Table I, male, 24 years), and filtered results
through different algorithms. (a) Original image is filtered through (b)–(f)
MDF, BM3D, FISF, FBF, and proposed method, respectively. Red arrows:
fine structures.

defects for the healthy subject, the HP gas should disperse
homogeneously in the lung. This is the case if one is to
expect the exact same amount of HP gas in each voxel.
When compared with the original image [viz., Fig. 6(a)], the
homogeneities are improved in the image (f).

The filtered results of Fig. 6(a) through the baseline methods
are shown in Fig. 6(b)–(e), respectively. We can see that
MDF not only causes blocking artifacts but also blurs the
fine details, although it can lessen artifacts and/or noise to
some extent. BM3D has good denoising performance but blurs
fine details to a certain extent. The filtering performance of
FISF is similar to that of MDF, that is, there exists some
blocking and blurring effects. The filtering performance of
FBF is inconspicuous with respect to denoising while slightly
affecting the fine structure of the lung. Compared with the
original image and filtered images through different baseline
methods, the proposed algorithm has a better performance
regarding the attenuation of artifacts and/or noise, and the
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TABLE I

SNR AND SMIE COMPARISONS FOR THE ORIGINAL AND IMPROVED
IMAGES THROUGH THE PROPOSED ALGORITHM FOR FIGS. 6–8

Fig. 7. One slice of the pulmonary HP 129Xe images of the COPD subject
(female, 56 years) and the filtered results obtained using different algorithms.
(a) Original HP MR image of the sixth layer of the lung. (b)–(f) Filtered
results using MDF, BM3D, FISF, FBF, and proposed method. Blue circles:
ventilation defects and red arrows: fine structures.

protection of details of the HP gas images, which results in
an increase in SMIE (see Table I).

For the COPD subject, Fig. 7(a)–(f) shows the original
pulmonary HP 129Xe MR image of the sixth layer of the lung,
and the filtered results are obtained via MDF, BM3D, FISF,
FBF, and proposed algorithm. Blue circles denote the regions
of ventilation defects, and red arrows denote the regions of fine
structures. Owing to each voxel containing different amounts
of airspace (i.e., partial volume effects) due to the structures

Fig. 8. One slice of pulmonary HP 129Xe images of the asthma subject
(female, 34 years) and filtered results obtained using different methods.
(a) Original image is filtered through (b)–(f) MDF, BM3D, FISF, FBF, and
the proposed algorithm.

of the lung which contains airway, bronchus, bronchioles,
vasculature, and alveoli, each of which persists throughout
the lung, it is difficult to differentiate in-heterogeneity due
to the partial volume effects from artifacts and/or noise. It can
be found from Fig. 7 that the original image [viz., Fig. 7(a)]
is susceptible to noise/artifacts, and fine details are blurred
and/or degenerated because of rapid decline of HP magneti-
zation. It is difficult to directly discern the ROIs, which is
unfavorable to understand or distinguish abnormal or normal
structures of the lung. After the k-space weighting algorithm,
the artifacts/noise are effectively eliminated, and fine structures
are clearer [see Fig. 7(f)]. This is advantageous to visualize
and discriminate ROIs, such as ventilation defects.

Similar to Fig. 6, some blocking artifacts and blurred details
are also existed in the filtered results obtained through MDF
and FISF [see Fig. 7(b) and (d)]. The BM3D can remove noise
and/or artifacts well while slightly degrading the image details
[see Fig. 7(c)]. Moreover, we can find that the substantial noise
and artifacts linger in Fig. 7(e).

For the asthma subject, Fig. 8(a)–(f) shows an original
HP MR image of the fifth layer of the lung, and filtered
results obtained using baseline methods and proposed method.
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TABLE II

FOR THE HEALTHY, COPD, AND ASTHMA SUBJECTS, THE STATISTICAL
ANALYSES OF THE SNR AND SMIE VALUES FOR THE ORIGINAL AND

IMPROVED IMAGES OBTAINED USING THE PROPOSED ALGORITHM

The meanings of blue circles and red arrows are the same as
those in Fig. 7. It can be found that the overall SNR and fine
structures of images are improved in Fig. 8(f), and the noise
and/or artifacts are mostly eliminated as well. In this case,
some ventilation defects and detailed regions (e.g., trachea or
vascular) are easily delineated or determined. From Figs. 6–8,
the proposed scheme is superior to MDF, BM3D, FISF, and
FBF at eliminating disturbances (e.g., artifacts and/or noise)
while highlighting fine structures. The same conclusion is also
derived from Tables I and II.

Quantitative comparisons are displayed in Table I that lists
SNR and SMIE values for the images with and without k-space
weighting. Table I indicates that the proposed method not only
significantly improve overall SNR but also evidently promote
SMIE values.

For the healthy, COPD and asthma subjects, Table II lists
the statistical analyses of the SNR and SMIE values for the
original and enhanced images obtained using the proposed
method. We can see that the P-value in each group of the
SNR comparison is smaller than 0.05. This indicates that our
method is statistically significantly different from the original
for SNR comparisons. It can be also found from Table II that
the P-value in each group of SMIE comparison is smaller
than 0.05. Thus, the proposed method can improve both SNR
and SMIE of HP MR images in a statistical sense. Table II
illustrates the better separation between healthy subjects and
patients as well.

D. Ventilation Defect Percentage

HP noble gas (129Xe/3He) ventilation-weighted MRI is
capable to portray region ventilation patterns in patients with
obstructive lung diseases, such as COPD or asthma [35]. When
united spatially registered 1H images of the lung, the lung
ventilated volume percentage (VVP) and its counterpart venti-
lation defect percentage (VDP) are recommended quantitative
metrics of lung function, where VDP = 1 − VVP [35]. VVP
is the ratio of ventilated lung volume in HP gas images to the
total lung volume in 1H images. The calculation of VDP/VVP,
therefore, needs the determination of ventilation defect regions
in HP gas images through the hierarchical k-means clustering

Fig. 9. One slice of a COPD subject and ventilation defect regions.
(a) 1H image. (b) 1H segmentation. (c) Original HP 129Xe MR image.
(d) Enhanced result of (c) through the proposed method. (e) Registered result
of HP and 1H image sets [i.e., (a) and (d)]. (f) Classification of ventilation
regions of (d). (g) Determined ventilation defect regions. The VDP values
before [i.e., (c)] and after processing [i.e., (d)] are 16.30% and 19.54%.

or others, as well as the segmentation of HP and 1H image
sets. We adopt the region growing technique to segment the
HP and 1H images, and manually exclude the major airways
in this section.

One healthy and one COPD subjects are utilized to com-
pare VDP values before and after processing (viz., without
or with the proposed k-space-based postprocessing method).
The MRI parameters are: TE = 1.9 ms, TR = 4.2 ms,
MS = 96 × 84, FOV = 336 × 384 mm2, ST = 8 mm, BW =
400 kHz, NS = 22, and 3-D bSSFP sequence. The respective
FEV1/FVC is 81% and 62%, where FEV1 is the forced
expiratory volume in 1 s, and FVC is the forced vital capacity.
Fig. 9 displays the 12th slice of COPD subject and determined
ventilation defect areas after processing [clusters in Fig. 9(f)
represent the gradations of signal intensity or ventilation],
where the red color in the image (f) and (g) denotes the
ventilation defects. We can see that the ventilation defects
are easily delineated. Nevertheless, it is important to note that
the segmentation of HP and 1H sets and clustering require
much attention because of the lack of ground truth. As for
the slice-by-slice VDP values with or without the k-space
weighting manipulation (some slices are abandoned because
those images are unable to fulfil demands of segmentation or
registration), the respective average of VDP before processing
is 5.65% and 19.06%, while 5.56% and 20.03% after modula-
tion. Through a Bland–Altman analysis, the mean difference
(±SD) between before and after the k-space manipulations
is 0.0009 ± 0.0152 L (lower limit = −0.0288 L and upper
limit = 0.0307 L) for the healthy volunteer, and −0.0097 ±
0.0175 L (lower limit = −0.0441 L and upper limit =
0.0247 L) for the COPD subject (where SD denotes the stan-
dard deviation). Howbeit, the above are the preliminary results
for VDP analyses and defects quantification. The separation
of healthy and diseased groups, and/or the correlation between
the image quantified using the k-space weighting operation and
clinical data and patient outcomes, should be further explored.

E. Discussions

A novel postprocessing improvement algorithm is presented
to either effectively enhance the SNR or fine details of HP
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gas images. Moreover, a new nonreference quality metric
called the SMIE is introduced to assess the image quality
of HP gas MRI because of the lack of criteria for quan-
titative evaluation. The algorithm could be attractive to the
HP gas community in that it could be applied retrospectively
(viz., no additional preparation and cost), and address the
specific and well-known sources of image degradation (viz.,
HP magnetization decay over time due to the repeated RF
excitation). The method can be easily actualized by other
investigators.

To further increase the sensitivities to diseases or obstructed
ventilation, the user can utilize some knowledge of raw data or
images (perhaps based on SNR, resolution, or both) to regulate
the parameters related to the presented algorithm, such as VDP.
The calculation of VDP/VVP requires the segmentation of 1H
and HP sets using the region growing, global/local thresh-
olding, k-means clustering, multiple atlas labeling, and fuzzy
C-means [36]–[38]. Nevertheless, the k-means clustering pos-
sibly fails with some HP gas images that possess low SNR
values because of its binary clustering nature and inability to
differentiate noise from lung tissue [35]. As stated previously,
the enhanced result obtained using the proposed method is
a tradeoff between the SNR and fine structures by adjusting
parameter α in (9). In this case, we can raise parameter α,
to acquire high SNR images to fulfil the demands of k-means
clustering. Similarly, one could lessen that parameter, which
potentially increases the contrast between regions of normal
and obstructed ventilation, to reasonably delineate ventila-
tion defects. Moreover, low SNR is a major limitation for
diffusion-weighted imaging [39]. After the proposed method,
the overall SNR could be improved, which possibly leads to
the improvement of the accuracy regarding diffusion parameter
estimation. The above offers more design flexibility for users,
making the presented method more general with the aim of
satisfying complex or specific requirements for diverse objects
and applications.

F. Limitations

There are some limitations to our study. First, the way
that the simulation is constructed (taking noisy images and
applying artificial HP magnetization decay) potentially alters
the noise properties of original 1H images (e.g., water phan-
tom), since applying the artificial magnetization decay possibly
artificially down weight the noise as well. Perhaps, it is a good
approach that would be taken as a “noiseless” image (i.e.,
the average of all 100 images), apply the decay weighting
and then add random noise. Moreover, the use of simulation
experiments seems to provide an opportunity to test the
performance over a range of original image quality levels.
However, the lack of evidence to show the performance in
a very low SNR regime draws the usefulness in that situation
into question. In the future, we will explore these arguable
issues. Second, the number of subjects in our study is small,
especially for patients. Hence, the in vivo experimental results
provided are insufficient to demonstrate the superiority of
the proposed algorithm (specifically for the identification of
ventilation defects). In this way, much attention should be

paid to the discrimination of ROIs (e.g., ventilation defects or
healthy tissue regions) and/or ventilation defect quantification.
Third, the need for the performance of image filtering should
be framed around the accuracy and precision of ventilation
defect identification or other relevant functional ventilation
metrics (e.g., PFTs). However, due to the absence of a ground
truth, the comparison among diverse established algorithms
for HP gas lung ventilation meets many difficulties. This
shows a linchpin for our future work. Fourth, the SMIE
introduced in this paper requires validation over a very large
data set, especially for HP gas MR images. The comparisons
between the SMIE and other reference-free metric used in
general image processing should be properly manipulated in
the further. Fifth, there are some potential negative effects of
the proposed k-space-based analysis (Fourier linear filtering in
fact), such as the smoothing, noise, or artifacts amplification.
In principle, the postprocessing data manipulation should be
avoided from happening if possible, since the filtering possi-
bly corrupts raw data/images. However, filtering is important
where the improvements in the analytical potential outweigh
the potential data corruption. Therefore, the filtering should
address specific and well-known sources of image degrada-
tion or corruption in traditional HP gas MRI. The findings
have potential interests for HP gas MRI community. Finally,
the synchronous presentation (the integration of SNR- and
resolution-weighted results) possibly generates confusion in
the understanding and/or discriminating ROIs (such as some
fine structures are potentially masked). We know that HP gas
MRI could provide structural and functional information of the
lung. If fine details of such information are further highlighted
at the same time, the potential of the proposed method will
be greatly strengthened.

IV. CONCLUSION

This paper presents an algorithm through the k-space
weighting matrices (by implementing the k-space weighting
using low-frequency boost and high-frequency modulation
which corrects for HP magnetization loss per excitation), and
an image fusion process to visually enhance the SNR and
fine structural details of HP 129Xe ventilation MR images of
the lung. This paper also introduces a second-derivative-like
visibility index, reference-free metric (SMIE), to objectively
quantify the image quality of pulmonary HP gas MRI. Various
metrics (such as SNR, PSNR, SSIM, and SMIE) are applied
to compare images reconstructed without or with k-space
weighting manipulation. Both simulation and in vivo exper-
imental results demonstrate that there are statistically signif-
icant differences in both SNR and SMIE terms before and
after processing, and the presented method provides improved
images (that is, raise SNR and SMIE in HP 129Xe ventilation
images, while qualitatively maintaining the appearance of the
fine structure and ventilation defects). This is a cost free,
intriguing, and promising strategy to improve the image qual-
ity (or image augmentation) which can be easily implemented
by others, and would be attractive or interesting to the HP gas
community. The presented method has the potential to improve
the identification, understanding, and/or delineation of ROIs in
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the lung, and early detection and/or diagnosis of pulmonary
diseases.
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