

Supporting Information

Detection and Chiral Recognition of α-Hydroxyl Acid through ¹H and CEST NMR Spectroscopy Using a Ytterbium Macrocyclic Complex

Haonan He⁺, Kelu Zhao⁺, Long Xiao, Yi Zhang, Yi Cheng, Sikang Wan, Shizhen Chen, Lei Zhang,* Xin Zhou,* Kai Liu,* and Hongjie Zhang

anie_201912072_sm_miscellaneous_information.pdf

Table of content

1 General	.2
2. Methods	.2
2.1. CEST method	.2
2.2. Relaxivities measurement	.2
3. Synthesis and characterization	.2
4. Proton NMR of free Yb-complexes	10
5. Schematic representation of the two stereoisomers of heptadentate	٢b
complex binds with α -hydroxyl acids and their arms rotational structu	re
	11

1 General

All reagents and solvents were purchased from commercial sources and used as received without other purification unless otherwise noted. ¹H, ¹³C NMR and CEST spectra have been recorded on a Bruker AVANCE III 400 NMR spectrometer.

2. Methods

2.1. CEST method

All CEST NMR studies were recorded on a Bruker AVANCE III 400 NMR (9.4 T) spectrometer. Saturation power range was from 14.1 μ T. Temperature unit controller Model # 2416 was used to control the temperature to 298 K. CEST spectra were acquired by applying a long, frequency selective pre-saturation pulse over the range of ±200 ppm to cover all potentially exchanging species, including the Yb-bound -OH molecule and amide proton. The chemical shift of bulk water proton was set to 0 ppm.

2.2. Relaxivities measurement

The T1 of the CEST samples were measured at 9.4 T at 298 K using a Bruker AVANCE III 400 MHz vertical bore spectrometer.

3. Synthesis and characterization

Scheme S1. Synthetic pathways of ligands studied in this work.

N-(2-bromoacetyl)-L-glycine tert-butyl ester (1) ^[1], N-(2-bromoacetyl) L- alanine tertbutyl ester (2) ^[1], 1,4,7,10–tetraazacyclododecane-1,4,7–tris(2-acetamido)-L-alanine (3) ^[1] and 1,4,7,10-tetraazacyclododecane-1,7-Bis(benzyloxy carbonyl) (4) ^[2] were synthesized using established procedures.

1,4,7,10-tetraazacyclododecane-1,7-Bis(benzyloxy carbonyl)-4-(2-acetamido)-Lalanine tertbutyl ester -10-(N-ethylene (tert-butoxycarbonyl) amino acetamide) (5):1,4,7,10-tetraazacyclododecane-1,7-Bis(benzyloxy carbonyl) (2 g, 4.6 mmol) and N-(2bromoacetyl) - L- alanine tertbutyl ester (1.22 g, 4.6 mmol) were dissolved in anhydrous CH₃CN in the excess amount of K₂CO₃ (3.5 g, 25 mmol). The resulting solution was stirred at 65°C overnight under N₂ condition for 12 hours and then the solution was filtered and solvents removed under vacuum. The residue was not purified and went to next step directly. The crude product and 4 mL triethylamine were dissolved in anhydrous CH₂Cl₂ (150 mL) and cooled by ice water (0 °C). Di-tert-butyl dicarbonate was dissolved CH₂Cl₂ (50 mL) and added dropwise to the mixed solution. The resulting solution was allowed to warm to room temperature and stirred for 8 hours. The solvent was removed under vacuum. The crude product was purified by flash column chromatography on silica, eluted with petroleum ether/ethyl acetate (45:55 v/v) to afford a colorless oil (700 mg, 21%).

¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.32 (3H, s br, CHC<u>H</u>₃), 1.39 (9H, s br, C(C<u>H</u>₃)₃), 1.44 (9H, s, C(C<u>H</u>₃)₃), 2.5-3.6 (18H, m, CH₂ on cyclen ring and NC<u>H</u>₂C=O), 4.40 (1H, s, CH₃C<u>H</u>), 5.11 (4H, s, OC<u>H</u>₂Ph), 7.04 (1H, s, NH), 7.34 (10H, m, CH₂<u>Ph</u>).

¹³C NMR (100 MHz, CDCl₃): δ (ppm), 18.44 (CH<u>C</u>H₃), 27.99 (C(<u>C</u>H₃)₃), 28.46 (C(<u>C</u>H₃)₃), 48.41 (<u>C</u>HCH₃), 49-55 (cyclen ring <u>C</u>H₂), 60.50 (N<u>C</u>H₂C=O), 67.36 (<u>C</u>H₂Ph), 79.75 (O<u>C</u>CH₃), 81.57 (O<u>C</u>CH₃), 128.12, 128.53, 136.72 (Ph), 155.74 (N<u>C</u>=OO), 156.94 (N<u>C</u>=OO), 170.02 (CH₂<u>C</u>=OO), 171.94 (CH<u>C</u>=OO).

1,4,7,10-tetraazacyclododecane-1-(2-acetamido)-L-alanine tertbutyl ester -7-(N-ethylene (tert-butoxycarbonyl) amino acetamide) (6):

Compound 5 (700 mg, 0.96 mmol) was dissolved in ethanol and transferred to a flask with 20% palladium on carbon (200 mg). The mixture was shaken on a Parr hydrogenator under a

H₂ pressure of 80 psi at room temperature for 12 hours. The resulting solution was filtered and solvent was removed under vacuum to afford a colorless oil (422 mg,96%).

¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.44 (3H, s br, CHC<u>H</u>₃), 1.46 (9H, d, C(C<u>H</u>₃)₃), 1.49(9H, s br, C(C<u>H</u>₃)₃), 2.7-3.6 (18H, m, CH₂ on cyclen ring and NC<u>H</u>₂C=O), 4.52 (1H, s, CH₃C<u>H</u>), 7.82(1H, s, NH).

¹³C NMR (100 MHz, CDCl₃): δ (ppm), 18.46 (CH<u>C</u>H₃), 28.04 (C(<u>C</u>H₃)₃), 28.51 (C(<u>C</u>H₃)₃), 47.45 (<u>C</u>HCH₃), 48-52 (cyclen ring <u>C</u>H₂), 58.36 (N<u>C</u>H₂C=O), 80.79 (O<u>C</u>CH₃), 82.22 (O<u>C</u>CH₃), 155.62 (N<u>C</u>=OO), 170.60 (CH₂<u>C</u>=OO), 173.30 (CH<u>C</u>=OO).

1,4,7,10-tetraazacyclododecane-1,7-di(2-acetamido)-L-glycine tertbutyl ester-4-(2-acetamido)-L-alanine tertbutyl ester-10-(N-ethylene (tert-butoxycarbonyl) amino acetamide) (7):

Compound 6 and N-(2-b romoacetyl)-L-glycine tertbutyl ester (476 g, 1.9 mmol) were dissolved in anhydrous CH₃CN in the excess amount of K₂CO₃ (2g, 15 mmol). The resulting solution was stirred at 65°C overnight under N₂ condition for 12 hours and then the solution was filtered and solvents removed under vacuum. The crude product was purified by flash column chromatography on Al₂O₃, eluted with methanol/dichloromethane (2:98 v/v) to afford a pale yellow oil (568 mg, 85%).

¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.38 (3H, d, CHC<u>H</u>₃), 1.43 (9H, d, C(C<u>H</u>₃)3), 1.47 (27H, d, C(C<u>H</u>₃)₃), 2.6-3.3 (22H, m, CH₂ on cyclen ring and NC<u>H</u>₂C=O), 3.91 (4H, m, NC<u>H</u>₂C=O), 4.40 (1H, q br, NC<u>H</u>C=O), 7.55 (1H, d, NH), 7.78 (2H, d, NH).

¹³C NMR (100 MHz, CDCl₃): δ (ppm) 18.10 (CH<u>C</u>H₃), 27.81 (C(<u>C</u>H₃)₃), 27.89 (C(<u>C</u>H₃)₃), 28.21 (C(<u>C</u>H₃)₃), 41.49(NCH₂C=O), 46.45(NCH₂C=O), 48.45 (NCH₂C=O), 52-55(cyclen ring <u>C</u>H₂), 58.29 (N<u>C</u>HC=O), 79.74 (<u>C</u>(CH₃)3), 81.69 (<u>C</u>(CH₃)3) 81.90 (<u>C</u>(CH₃)3), 155.75 (N<u>C</u>=OO), 168.84 (N<u>C</u>=OCH₂), 170.81 (N<u>C</u>=OCH₂), 171.51 (CH₂<u>C</u>=OO), 172.43 (CH<u>C</u>=OO).

1,4,7,10-tetraazacyclododecane-1,7-di(2-acetamido)-L-glycine-4-(2-acetamido)-L-alanine (8):

Compound 7 (568 mg, 0.78 mmol) was reacted directly with 3 mL TFA for 12 hours. The solvent was then removed under vacuum and the final compound was obtained as a yellow oil (377 mg, 91%).

¹H NMR (400 MHz, D₂O): δ (ppm) 1.18 (3H, d, CHC<u>H</u>₃), 2.4-3.3 (22H, m, CH₂ on cyclen ring and NC<u>H</u>₂C=O), 3.62 (4H, dd, NC<u>H</u>₂C=O), 4.02 (1H, q, C<u>H</u>CH₃).

¹³C NMR (100 MHz, D₂O): δ (ppm) 17.75 (CH<u>C</u>H₃), 163.10 (N<u>C</u>=OCH₂), 42.80 (N<u>C</u>H₂C=O), 45.83 (N<u>C</u>H₂C=O), 49.09 (N<u>C</u>H₂C=O), 50.73, 51.18, 55.12, 56.04 (<u>C</u>H₂ on cyclen ring), 59.35 (N<u>C</u>HC=O), 173.87 (N<u>C</u>=OCH₂), 176.85 (CH₂<u>C</u>=OO), 179.69 (CH<u>C</u>=OO).

1,4,7,10-tetraazacyclododecane-1,7-Bis(benzyloxy carbonyl)-4-(2-acetamido)-Lalanine tertbutyl ester -10-(N-ethylene (tert-butoxycarbonyl) amino acetamide) (9):1,4,7,10-tetraazacyclododecane-1,7-Bis(benzyloxy carbonyl) (2 g, 4.6 mmol) and N-(2bromoacetyl)-L-glycine tertbutyl ester (1.16 g, 4.6 mmol) were dissolved in anhydrous CH₃CN in the excess amount of K₂CO₃ (3.5 g, 25 mmol). The resulting solution was stirred at 65°C overnight under N₂ condition for 12 hours and then the solution was filtered and solvents removed under vacuum. The residue was not purified and went to next step directly. The crude product and 4 mL triethylamine were dissolved in anhydrous CH₂Cl₂ (150 mL) and cooled by ice water (0 °C). Di-tert-butyl dicarbonate was dissolved CH₂Cl₂ (50 mL) and added dropwise to the mixed solution. The resulting solution was allowed to warm to room temperature and stirred for 8 hours. The solvent was removed under vacuum. The crude product was purified by flash column chromatography on silica, eluted with petroleum ether/ethyl acetate (45:55 v/v) to afford a colorless oil (751 mg, 23%).

¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.39 (9H, s br, C(C<u>H</u>₃)₃), 1.45 (9H, s, C(C<u>H</u>₃)₃), 2.5-3.9 (20H, m, CH₂ on cyclen ring, NC<u>H</u>₂C=O and NHC<u>H</u>₂C=O), 5.11 (4H, s, OC<u>H</u>₂Ph), 6.91 (1H, s, NH), 7.34 (10H, m, CH₂<u>Ph</u>).

¹³C NMR (100 MHz, CDCl₃): δ (ppm), 28.14 (C(<u>C</u>H₃)₃), 28.48 (C(<u>C</u>H₃)₃), 41.76 (<u>C</u>H₂CH₃), 47-56 (cyclen ring <u>C</u>H₂), 60.37 (N<u>C</u>H₂C=O), 67.40 (<u>C</u>H₂Ph), 79.74 (O<u>C</u>CH₃), 81.85 (O<u>C</u>CH3), 128.12, 128.53, 136.70 (Ph), 155.59 (N<u>C</u>=OO), 157.04 (N<u>C</u>=OO), 170.72 (CH₂<u>C</u>=OO), 171.12 (CH<u>C</u>=OO).

1,4,7,10-tetraazacyclododecane-1-(2-acetamido)-L-alanine tert-butyl ester -7-(N-ethylene (tert-butoxycarbonyl) amino acetamide) (10):

Compound 9 (751 mg, 1.06 mmol) was dissolved in ethanol and transferred to a flask with

20% palladium on carbon (230 mg). The mixture was shaken on a Parr hydrogenator under a H_2 pressure of 80 psi at room temperature for 12 hours. The resulting solution was filtered and solvent was removed under vacuum to afford a colorless oil (447 mg,95%).

¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.46 (9H, s, C(C<u>H</u>₃)₃), 1.50 (9H, s, C(C<u>H</u>₃)₃), 2.8-4.0 (20H, m, CH₂ on cyclen ring, NC<u>H</u>₂C=O and NHC<u>H</u>₂C=O), 8.22 (1H, s, NH).

¹³C NMR (100 MHz, CDCl₃): δ (ppm), 28.16 (C(<u>C</u>H₃)₃), 28.54 (C(<u>C</u>H₃)₃), 41.83 (<u>C</u>H₂CH₃), 44-52 (cyclen ring <u>C</u>H₂), 58.13 (N<u>C</u>H₂C=O), 80.94 (O<u>C</u>CH₃), 82.28 (O<u>C</u>CH₃), 156.08 (N<u>C</u>=OO), 171.40 (CH₂<u>C</u>=OO), 174.70 (CH<u>C</u>=OO).

1,4,7,10-tetraazacyclododecane-1,7-di(2-acetamido)-L-glycine tertbutyl ester-4-(2-acetamido)-L-alanine tertbutyl ester-10-(N-ethylene (tert-butoxycarbonyl) amino acetamide) (11):

Compound 10 and N-(2-bromoacetyl)-L-alanine tertbutyl ester (534 g, 2.0 mmol) were dissolved in anhydrous CH₃CN in the excess amount of K2CO3 (2g, 15 mmol). The resulting solution was stirred at 65°C overnight under N₂ condition for 12 hours and then the solution was filtered and solvents removed under vacuum. The crude product was purified by flash column chromatography on Al₂O₃, eluted with methanol/dichloromethane (3:97 v/v) to afford a pale yellow oil (714 mg, 83%).

¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.36 (6H, d, CHC<u>H</u>₃), 1.43 (9H, s, C(C<u>H</u>₃)3), 1.45 (27H, d, C(C<u>H</u>₃)3), 2.6-3.5 (22H, m br, C<u>H</u>₂ on cyclen ring and NC<u>H</u>₂C=O), 3.95 (2H, d, NC<u>H</u>₂C=O), 4.40 (2H, m, NC<u>H</u>C=O), 7.34(2H, d, NH), 7.81 (1H, s, NH).

¹³C NMR (100 MHz, CDCl₃): δ (ppm) 18.34 (CH<u>C</u>H₃), 27.79 (C(<u>C</u>H₃)₃), 28.05 (C(<u>C</u>H₃)₃), 28.44 (C(<u>C</u>H₃)₃), 41.67(N<u>C</u>H₂C=O), 46.69 (N<u>C</u>H₂C=O), 48.30 (N<u>C</u>H₂C=O), 52-54 (cyclen ring <u>C</u>H₂), 59.26 (N<u>C</u>HC=O), 79.72 (<u>C</u>(CH₃)₃), 81.85 (<u>C</u>(CH₃)₃), 155.67 (N<u>C</u>=OO), 169.15 (N<u>C</u>=OCH₂), 170.60 (N<u>C</u>=OCH₂), 171.42 (CH₂<u>C</u>=OO), 172.15 (CH<u>C</u>=OO).

1,4,7,10-tetraazacyclododecane-1,7-di(2-acetamido)-L-glycine-4-(2-acetamido)-L-alanine (12):

Compound 11 (714 mg, 0.88 mmol) was reacted directly with 3 mL TFA for 12 hours. The solvent was then removed under vacuum and the final compound was obtained as a yellow oil (445 mg, 93%).

¹H NMR (400 MHz, D₂O): δ (ppm) 1.21 (6H, m, CHC<u>H</u>₃), 2.4-3.3 (22H, m br, C<u>H</u>₂ on cyclen ring and NC<u>H</u>₂C=O), 3.76 (2H, d, NC<u>H</u>₂C=O), 4.05 (2H, m, NC<u>H</u>C=O).

¹³C NMR (100 MHz, D₂O): δ (ppm) 17.44 (CH<u>C</u>H₃), 43.25 (N<u>C</u>H₂C=O), 45.48 (N<u>C</u>H₂C=O), 48.94 (N<u>C</u>H₂C=O), 50-54 (cyclen ring <u>C</u>H₂), 58.56 (N<u>C</u>HC=O), 163.00 (N<u>C</u>=OO), 172.94 (N<u>C</u>=OCH₂), 173.90 (N<u>C</u>=OCH₂), 176.12 (CH₂<u>C</u>=OO), 180.30 (CH<u>C</u>=OO).

General procedure for the preparation of Yb³⁺ complexes.

Yb(III)-1,4,7,10-tetraazacyclododecane-1,7-di(2-acetamido)-L-glycine-4-(2-

acetamido)-L-alanine (Yb1): Compound 7 was dissolved in H_2O and 0.95 equivalents of YbCl₃ were added. Concentrated solutions of 1N NaOH and 1N HCl were used to adjust the pH to 5.5-6.0. Xylenol Orange tests were performed until no free metal was detected. Samples were filtered using 0.45 µm membrane filter for further experiment.

Yb(III)-1,4,7,10-tetraazacyclododecane-1,7-di(2-acetamido)-L-glycine-4-(2-

acetamido)-L-alanine (Yb2): Compound 10 was dissolved in H_2O and 0.95 equivalents of YbCl₃ were added. Concentrated solutions of 1N NaOH and 1N HCl were used to adjust the pH to 5.5-6.0. Xylenol Orange tests were performed until no free metal was detected. Samples were filtered using 0.45 µm membrane filter for further experiment.

Yb (III)- 1,4,7,10-tetraazacyclododecane-1,4,7-tris(2-acetamido)-L-alanine (Yb3): Compound 3 was dissolved in H₂O and 0.95 equivalents of YbCl₃ were added. Concentrated solutions of 1N NaOH and 1N HCl were used to adjust the pH to 5.5-6.0. Xylenol Orange tests were performed until no free metal was detected. Samples were filtered using 0.45 μ m membrane filter for further experiment.

NMR spectra of compound 7, 8, 11 and 12

Figure S3. ¹H-NMR spectrum of 8 in D₂O.

Figure S5. ¹H-NMR spectrum of 11 in CDCl₃.

Figure S7. ¹H-NMR spectrum of 12 in D₂O.

4. Proton NMR of free Yb-complexes

Figure S9. ¹H NMR spectra of free Yb-complexes in D₂O.

5. Schematic representation of the two stereoisomers of heptadentate Yb complex binds with α -hydroxyl acids and their arms rotational structure.

Figure S10. (Top). The complexes are shown from bond-water view. The bond water was deleted for clarity. (Bottom) In a δ -substituted pendent arms, the bulky group preferentially adopts a pseudo-equatorial position (bottom left). All chiral centers on the complexes are in S-configuration.

Reference:

- L. Zhang, A. F. Martins, P. Zhao, M. Tieu, D. Esteban-Gomez, G. T. McCandless, C. Platas-Iglesias, A. D. Sherry, *J. Am. Chem. Soc.* 2017, *139*, 17431-17437.
- [2] K. N. Green, S. Viswanathan, F. A. Rojas-Quijano, Z. Kovacs, A. D. Sherry, *Inorg. Chem.* 2011, 50, 1648-1655.