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Summary of main observation and conclusion  In multidimensional (nD) NMR spectroscopy, t1 noise usually appears as ridges along indirect dimen-
sions, and affects observation of weak signals. The main source of t1 noise is instrumental instability, which causes random variation of FID amplitude 
during data acquisitions and introduces random noise-like peaks into spectrum after Fourier transformation. A number of efforts have been devoted, in 
order to develop new method or to improve existing approaches for suppressing t1 noise. Herein, we propose a novel t1 noise suppression method based 
on resampling algorithm for data processing, shortened as REAL-t1. The method was verified using simulated 2D spectra, and NOESY spectra of sucrose 
and protein GB1, showing that the spectral quality was improved in all cases. The performance of REAL-t1 was also compared with another recently pro-
posed method, which showed that these two methods provided similar performance while REAL-t1 cost much shorter experimental time. 

Background and Originality Content 

NMR spectroscopy can provide rich information of molecular 
structure, interaction and dynamics at atomic resolution, and has 
been intensively used in many fields such as chemistry, biology, 
and medicine. That information is generally obtained from multi-
dimensional (nD) NMR spectra/experiments, where the inherent 
artifacts, such as t1 noise,[1-2] truncation,[3-4] etc., often deteriorate 
quality of spectra and subsequently hinder correct derivation of 
qualitative and quantitative information. The t1 noise appears as 
ridges of noise parallel to the indirect dimension associated with 
strong peaks in nD spectra, and especially the NOE based experi-
ments suffer the most. The phenomena of t1 noise were noticed 
about forty years ago[5-7] and the sources were analyzed soon 
after.[1-2] Since then, there has been a continuous interest in de-
veloping methods for t1 noise suppression, which may be summa-
rized into three categories: application of pulsed field gradient 
(PFG), experimental design and post-processing. In the first cate-
gory, application of PFG is well known for coherence pathway 
selection and is improved as a simple way in t1 noise suppres-
sion.[8-20] It was also demonstrated that p-type signals have less t1 
noise than n-type signals in PFG-COSY.[20] The experimental design, 
the second category, mainly focuses on reducing intense diagonal 
peaks that t1 noise is associated with,[21-25] and on elimination of 
the t1 noise by means of randomized acquisition in the indirect 
dimension[26] or temperature control.[27] We had shown that PFG, 
double quantum filter and diagonal free COSY could dramatically 
reduce the t1 noise.[23] In the third category, symmetrization of 2D 
spectrum was proposed by Wüthrich et al. in 1981.[28] The meth-
ods based on subtraction or weighted smoothing were also pro-
posed to reduce t1 ridges.

[22,29-30]
 The other post-processing 

methods include reference deconvolution,[31] correlated trace 
denoising[32] and singular value decomposition.[33] Recently, it was 
reported that co-addition of multiple spectra could reduce t1 

noise significantly, due to that t1 noise from different acquisition is 
unlikely to correlate with each other.[34]  

We had proposed an effective method[35-36] for simultaneously 
suppressing non-uniform sampling artifacts and noise in NMR 
spectroscopy based on resampling algorithm (REAL)[37] and com-
pressed sensing.[38] And this method was implemented most re-
cently in protein crystallography, to suppress spurious peaks and 
non-correlative noises in the difference Patterson maps.[39] Con-
sidering the random feature of the t1 noise,[1-2,34] this method is 
extended as an alternative approach for suppressing t1 noise. The 
proposed technique REAL-t1, standing for t1 noise suppression by 
resampling algorithm, was verified with simulated and experi-
mental data. The improved spectral qualities are obtained in all 
cases.  

Results and Discussion 

The procedure of REAL-t1 processing is diagramed in Figure 1. 
The initial spectrum (B0), is obtained conventionally from the 
sampled raw time domain dataset (A0). If spectrometer is not 
stable enough, t1 noise associated with strong peak will be pre-
sented in the spectrum B0. In the next step, a number of sub- 
datasets (A1, A2, ···, An) are randomly selected from A0 using the 
resampling principle.[37] In order to get a reliable noise-suppressed 
spectrum, the number of generated sub-datasets should be more 
than 40, and the size of sub-dataset should be between 50% and 
65% of the data points of the raw time domain dataset.[35] More 
sub-datasets may bring higher statistical precision, but take longer 
processing time. And according to our experience, the number of 
sub-datasets higher than 100 does not improve processing per-
formance obviously. These sub-datasets are non-uniformly sam-
pled (NUS) data, in which case compressed sensing method (CS)[38] 
is chosen for spectral reconstruction from the sub-datasets, re-
sulting in the same number of sub-spectra or testing spectra (B1, 
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B2, ···, Bn). It has been demonstrated that CS is able to remove the 
artifacts induced by non-uniform sampling.[40-43] As demonstrated, 
t1 noise is differently distributed in the testing spectra (B1, B2, ···, 
Bn), while the true signal peaks appear steadily. The reason is that, 
t1 noise is actually caused by random variation of FID, and each 
sub-dataset has different FID combination. Thus, the statistics of 
spectral intensity fluctuation among testing spectra is able to dis-
tinguish between true signals and t1 noise. In the third step, rela-
tive standard variations (RSD) were obtained for every spectral 
elements based on the statistical analyses. The true signals should 
have small RSD, while t1 noise should have large RSD. Thus, the 
RSD is used to distinguish signals/peaks and t1 noise. Next, a 
weighting matrix (D, in Figure 1) is generated from RSD matrix by 
equation (1), where α defines noise level in the resulting spec-
trum, β is the jump sharpness of weighting function curve, and ε 
is related to the RSD threshold to differentiate true signal and t1 
noise.[35] As the final step, the noise suppressed spectrum (Figure 
1C) is derived by point-by-point multiplication of the initial spec-
trum (B0) and the weighting matrix (D). 

 (1) 

 

Figure 1  The scheme of REAL-t1 processing method. 

The performance of REAL-t1 was verified using simulated data 
firstly. A simulated 2D time domain dataset was constructed using 
the parameters shown in Table 1. This dataset was processed 
conventionally to obtain a spectrum without t1 noise, as shown in 
Figure 2A. The simulated t1 noise was introduced into Figure 2B by 
randomly adjusting the FID amplitude of each t1 increment,[33] 
since the main source of t1 noise is the instrument instability 
among scans. The REAL-t1 processed spectrum was shown in Fig-
ure 2C, in which t1 noise was well suppressed. For comparison, 
the spectra co-addition method proposed by Mo et al.[34] was 
applied by addition of eight simulated spectra with t1 noise gen-
erated in the same manner stated above, and the result is shown 
in Figure 2D. Although both methods give rise to similar results in 
t1 noise suppression, the spectra co-addition method needs at  

Table 1  Line parameter values of the simulated spectrum (t1 noise free) 

Peak index 
Resonance frequency/Hz 

 Amplitude 
Transverse relaxa-

tion rate/s
–1

 F1 F2 

1
 

–30 –30 12 000 4 

2
 

–30 30 70 4 

3
 

30 –30 70 4 

4
 

30 30 200 4 

 

Figure 2  (A) The simulated 2D NMR spectrum according to the parame-

ters in Table 1. (B) The spectrum introduced t1 noise by randomly adjusting 

the FID amplitude of each t1 increment. (C) The t1 noise suppression with 

REAL-t1 method. (D) The t1 noise suppression by addition of eight inde-

pendently simulated spectra. 

least eight independently sampled datasets as the authors sug-
gested, which means it costs much more experimental time than 
REAL-t1. 

For the above simulated datasets, the spectral width was 200 
Hz in each dimension, and the sampling complex points were 256 
and 512 in t1 and t2 dimensions, respectively. When introducing t1 
noise, the random adjusting of FID amplitude was performed by 
multiplication with a scaling factor randomly distributed between 
0.95 and 1. In the conventional processing of the simulated data, 
squared cosine was used as window function in both dimensions. 
The sizes of processed data were extended to 512 and 1024 in t1 
and t2 dimensions by zero filling. In the resampling procedure of 
REAL-t1 processing, there were 65 sub-datasets randomly chosen 
from the original dataset, and every sub-dataset contained 60% 
data points. For each sub-dataset, after normal processing per-
formed in t2 dimension, t1 data points were reconstructed by iter-
ative soft threshold (IST) method, which is a commonly used 
compressed sensing reconstruction algorithm,[42-43] then they 
were processed conventionally to obtain testing spectrum. In the 
generation of weighting matrix, the values of α, β and ε of Eq. (1) 
were 0.1, 100, and 0.2, respectively. 

The proposed method was also verified by NOESY spectra of 
small organic molecule sucrose and protein GB1. Figures 3A and 
4A showed the original NOESY spectra of sucrose and GB1, re-
spectively. As marked with red rectangles in Figure 3A, there was 
apparent t1 noise near δ 3.6 and δ 3.74 (F2). As shown in Figure 3B, 
t1 noise was well suppressed by REAL-t1 processing. When the 
spectrum was added with another seven independently sampled 
spectra,[34] t1 noise was suppressed to the similar extent, as 
demonstrated in Figure 3C. The similar performances of REAL-t1 
and spectra co-addition method were also observed in t1 noise 
suppression on the NOESY spectra of GB1, as shown in Figures 4B 
and 4C. 

The sucrose sample was 5 mg sucrose dissolved in 0.6 mL D2O. 
The NOESY experiment of sucrose was performed on a Bruker 
AVANCE III 600 spectrometer. The spectral width was 2000 Hz for 
both F1 and F2 dimensions. The size of sampled complex points  
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Figure 3  Part of the NOESY spectra of sucrose. As marked with red 

rectangles, there was obvious t1 noise near δ 3.6 and δ 3.74 (F2) in (A) the 

original spectrum. The t1 noise was suppressed by (B) REAL-t1 processing, 

and by (C) co-addition of eight independently sampled spectra. 

 

Figure 4  Part of the NOESY spectra of protein GB1. (A) The original 

spectrum in which there was t1 noise near δ 0.8 and δ 0.64 (F2). (B) The t1 

noise suppression by REAL-t1 processing. (C) The t1 noise suppression by 

co-addition of eight independently sampled spectra. 

was 128 (t1) by 1024 (t2). The weighting function was squared 
cosine for both dimensions. The size of time domain dataset was 
extended to 256 (t1) by 2048 (t2) by zero filling. In REAL-t1 pro-
cessing, the parameters were the same with those in the former 
REAL-t1 processing on simulated data. The protein sample was a 5 
mM aqueous solution (10% D2O) of 15 N labeled GB1. The NOESY 
experiment of GB1 was performed on a Bruker AVANCE III 800 
spectrometer. The spectral width was 12820 Hz for both F1 and F2 
dimensions. The size of sampled complex points was 256 (t1) by 
1024 (t2). The weighting function was squared cosine for both 
dimensions. The size of time domain dataset was extended to 512 
(t1) by 2048 (t2) by zero filling. In REAL-t1 processing, there were 
90 sub-datasets randomly chosen from the original dataset, and 
every sub-dataset contained 65% data points. In the generation of 
weighting matrix, the values of α, β and ε of Eq. (1) were 0.1, 100, 
and 0.5, respectively. The concentration of GB1 sample was much 
lower than that of sucrose, thus, more sub-datasets and more 
data points in each sub-dataset were needed for enough signal- 
to-noise ratios in the REAL-t1 processing on GB1 NOESY spectrum. 

The parameters used in REAL-t1 processing certainly influence 
the quality of processed spectrum. To explore the parameter set-
up, one signal and three t1 noise peaks were arbitrarily selected 
respectively from the previous sucrose NOESY and GB1 NOESY 

spectra. These peaks were marked in the Supporting Information. 
When the number of resampled sub-datasets was set from 10 to 
140 with increment 10, the RSD values of those selected peaks 
were plotted in Figure 5. As shown in this figure, the RSD values of 
t1 noise peaks fluctuated largely in case of small sub-dataset 
number, and the fluctuation of RSD values tended to convergence 
when the number of sub-datasets increased. Since RSD value is 
the critical criterion to distinguish true signal and t1 noise, larger 
sub-dataset number will bring more stable processing perfor-
mance. From Figure 5, when sub-dataset number was larger than 
40, RSD fluctuation decreased, and when sub-dataset number was 
larger than 100, RSD fluctuation became flat. Thus, in REAL-t1 pro-
cessing, the number of sub-datasets should be higher than 40 at 
least. And for stable performance, it is recommended to set 
sub-dataset number around 100 or higher. Certainly more 
sub-datasets need more processing time, so it has to compromise 
between performance and processing time. From Figure 5, the 
RSD of t1 noise peaks were all higher than 0.6 when the RSD varia-
tion stabilized. It is also found in Figure 5 that, the RSD of true 
signal in (B) the GB1 NOESY was much higher than that in (A) the 
sucrose NOESY. This phenomenon was caused by the different 
signal to noise ratio (SNR) in these two spectra. Due to the low 
solute concentration, signals in the GB1 NOESY spectrum were 
influenced by background noise (thermal noise), which resulted in 
higher signal RSD in the GB1 NOESY spectrum. The distribution of 
RSD in Figure 5(B) indicated that setting ε as 0.5 is recommended 
for low SNR spectra. The quantitative relation between SNR and 
signal RSD in REAL-t1 processing will be studied in further work. 

 

Figure 5 The RSD curves of signal and t1 noise peak intensities with 

number of resampled sub-datasets. The RSD values of one signal peak and 

three t1 noise peaks of (A) the sucrose NOESY spectrum and (B) the GB1 

NOESY spectrum, were ploted with the number of resampled sub-datases 

in REAL-t1 processing. The locations of those signal and t1 noise peaks 

were listed in the Supporting Information.  

The simulated data was generated using a home-made 
MATLAB script. The conventional processing of the simulated and 
experimental data was performed with NMRPipe.[44] The software 
used to perform REAL-t1 processing, was made up of Python 
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scripts, NMRPipe scripts, and C++ programs. All the above men-
tioned scripts and programs are available upon request from the 
authors. 

Conclusions 

A statistical resampling based processing method called 
REAL-t1 was proposed to suppress t1 noise in multidimensional 
NMR experiments. Its performance was verified by simulated data, 
and NOESY spectra of small molecule sucrose and protein GB1. 
Compared with the recently reported spectra co-addition meth-
od,[34] REAL-t1 provided similar t1 noise suppression performance 
with much less experimental time. 

Supporting Information  

The processing performance of REAL-t1 on an HSQC spectrum 
of the mixture of sortase A protein and QALPETG-NH2 peptide. 
The locations of selected signal and t1 noise peaks observed in 
Figure 5. The Supporting Information for this article is available on 
the WWW under https://doi.org/10.1002/cjoc.201900389.  
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