Synthesis of Branched Monodisperse Oligoethylene Glycols and \(^{19}\text{F} \text{MRI-Traceable Biomaterials through Reductive Dimerization of Azides}

Jing Zhang,¹ Yuan Yuan,¹ Yu Li,¹ Hao Yang,¹ Huaibin Zhang,¹ Shizhen Chen,¹ Xin Zhou,¹ Zhigang Yang*‡ and Zhong-Xing Jiang*‡

†Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.

‡State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Wuhan 430071, China.

Table of contents

1. General information S2
2. \(n\)-octanol/water partition coefficients (logP) measurement S2
3. Solvent-dependent \(^{19}\text{F} \text{NMR of 40 and 41}\) S2
4. Dynamic light scattering of 41 S3
5. \textit{In vitro} \(^{19}\text{F} \text{MRI experiments of 40 and 41}\) S3
6. Cytotoxicity assay of 40 and 41 S3
7. Copies of \(^1\text{H}/^{13}\text{C}/^{19}\text{F} \text{NMR spectra and mass spectra (HRMS) of compounds.}\) S4
1. General information

1H, 19F and 13C NMR spectra were recorded on a Bruker 400 MHz. Chemical shifts are in ppm and coupling constants (J) are in Hertz (Hz). 1H NMR spectra were referenced to tetramethylsilane (d, 0.00 ppm) using CDCl$_3$ as solvent, 13C NMR spectra were referenced to solvent carbons (77.16 ppm for CDCl$_3$). 19F NMR spectra were referenced to 2% perfluorobenzene (s, -164.90 ppm) in CDCl$_3$. The splitting patterns for 1H NMR spectra are denoted as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), b (broad) and combinations thereof. MS spectra were recorded on an Asilent LCMS-1100 spectrometer. MALDI-TOF mass spectra were recorded on a MALDI-TOF/TOF 5800 (AB SCIEX) spectrometer using the reflector mode for positive ions with α-cyano-4-hydroxycinnamic acid as matrix.

2. n-Octanol/Water partition coefficients (logP) measurement

The logP values of compounds 40-41 were measured following shake-flask method. Briefly, the product was dissolved in distilled n-octanol saturated with water. Then 1 mL of this solution was mixed with an equal volume of water saturated with distilled n-octanol and mixed on a vortex device. After shaking the mixture overnight, water phase was separated by centrifugation. Equal-volume samples of the shaken water phase and the starting solution were subsequently taken and analyzed by HPLC. The peak area was measured at $\lambda = 254$ nm, and compared with calibration curve to obtain the concentration of the peptide. LogP values were determined from: $\text{Lg}\left[\frac{C_s-C_w}{C_w}\right]$, where C_s and C_w are the concentrations of the starting water solution and the water phase of the compound, respectively.

3. Solvent-dependent 19F NMR of 40 and 41

Solvent-dependent 19F NMR spectra were referenced to 10% sodium trifluomethanesulfonate (s, -79.61 ppm) in D$_2$O at 25°C.
4. Dynamic light scattering of 41

Solution of 41 in H2O at 0.07 mM was used for DLS analysis. The particle size was measured at an angle of 90° in a 10 mm diameter cell at the room temperature with a Dynamic Light Scattering (DLS) Analyzer (Malvern ZetasizerNano 3690). Eleven scans were run for each measurement and the measurement was repeated 3 times. The particle size and polydispersity index (PDI) were calculated by Malvern software.

5. In vitro 19F MRI experiments of 40 and 41

All magnetic resonance imaging (MRI) experiments were performed on a 400 MHz Bruker BioSpec MRI system. The temperature of the magnet room was maintained at 25 °C during the entire MRI experiment. The 19F in vitro images were acquired using a gradient-echo (GRE) pulse sequence, method = RARE, matrix size = 32 × 32, SI = 20 mm, FOV = 3.0 cm, TR = 2500 ms, TE = 2.8 ms, scan time = 160 s.

6. Cytotoxicity assay of 40 and 41

HepG2 cells were cultured in DMEM medium containing 10% FBS and 1% streptomycin double antibody. L929 cells were cultured in alpha-MEM medium containing 10% FBS and 1% streptomycin double antibody. All cells were cultured at 37 °C in humidified atmosphere containing 5% CO2 and the growth medium was replaced with fresh media every 24 h. The cell viability assay of compounds 40 and 41 were investigated in L929 cell lines and HepG2 cell lines in vitro by MTT assay. L929 cells HepG2 cells were seeded into a 96-well plate for several hours. Subsequently, a gradient concentration of the compounds ranging from 62 μg/mL to 1000 μg/mL were added in a series of wells. Every concentration was set with five wells at least. The wells with 100 μL culture medium alone were used as negative control and wells containing cells alone were used as positive control. After incubation for 24 h, the medium was replaced with 100 μL MTT (1.0 mg/mL) solution and incubated for 4 h. Then the medium was replaced with 200 μL DMSO and the absorbance value was measured at 490 nm using a microplate reader (Bio Tek Instruments, USA).
7. Copies of 1H/13C/19F NMR, MS and mass spectra (HRMS) of compounds

1H NMR of compound 2

1H NMR of compound 3
1H NMR of compound 4

1H NMR of compound 5
1H NMR of compound 6

13C NMR of compound 6
HRMS of compound 6

\[
\begin{align*}
\text{ESI Scan (0.083 min)} & \quad \text{Frag=70.0V 8PEG-20200417+. d Subtract} \\
611.18844 & \\
242.28565 & \\
751.26941 & \\
1197.35859 &
\end{align*}
\]

\[\text{Counts vs. Mass-to-Charge (m/z)}\]

\(0 \quad 100 \quad 200 \quad 300 \quad 400 \quad 500 \quad 600 \quad 700 \quad 800 \quad 900 \quad 1000 \quad 1100 \quad 1200 \quad 1300 \quad 1400\]

\[\text{x10}^4\]

\(^1\text{H} \text{NMR of compound 7}\)

\[\text{N}\text{3CH2CHO} \text{Me}\]

\(^1\text{H} \text{NMR} (\text{CDCl}_3, 400 \text{ MHz})\]
1H NMR of compound 8

1H NMR of compound 9
1H NMR of compound 10

19F NMR of compound 10
1H NMR of compound 11

19F NMR of compound 11
1H NMR of compound 12

13C NMR of compound 12
HRMS of compound 12

\[\text{RT: 6.55 AV: 1 NL: 1.02E7} \]

\[\text{T: FTMS + p ESI Full ms [150.0000-2000.0000]} \]

\(m/z \) values:
- 744.4346
- 745.4379
- 750.4084
- 746.4404
- 752.4630
- 758.4476
- 751.4637
- 728.9197
- 731.5043
- 752.4939
- 756.4050
- 752.4630
- 768.4216
- 772.8856
- 741.9021
- 739.9115

\[\text{1H NMR of compound 13} \]

\[\text{1H NMR (CDCl₃, 600 MHz)} \]
13C NMR of compound 13

HRMS of compound 13
1H NMR of compound 14

13C NMR of compound 14
HRMS of compound 14

1H NMR of compound 15
13C NMR of compound 15

HRMS of compound 15
1H NMR of compound 16

13C NMR of compound 16
HRMS of compound 16

1H NMR of compound 17
13C NMR of compound 17

HRMS of compound 17
1H NMR of compound 18

13C NMR of compound 18
$^{19}\text{F NMR of compound 18}$

$^{19}\text{F NMR (CDCl}_3, 370\text{MHz})$

$^{19}\text{F NMR of compound 18}$

$^{19}\text{F NMR (CDCl}_3, 370\text{MHz})$
\[\text{1H NMR of compound 19} \]

\[\text{13C NMR of compound 19} \]
19F NMR of compound 19

HRMS of compound 19
1H NMR of compound 20

13C NMR of compound 20
HRMS of compound 20

\[\text{RT: 7.08, AV: 1, NL: 1.31E9} \]
\[\text{T: FTMS + p ESI Full ms [150.0000-2000.0000]} \]

\[\text{m/z} \]

\[\text{Relative Abundance} \]

\[\text{524.2828, 526.2884, 502.3006, 531.8671, 519.3280, 540.2559, 564.2752, 504.3057, 592.2700, 578.2905, 462.9408, 547.3603, 469.0003} \]

\[\text{^1H NMR of compound 21} \]

\[\text{^1H NMR (CDCl3, 400 MHz)} \]
13C NMR of compound 21

HRMS of compound 21
1H NMR of compound 22

13C NMR of compound 22
HRMS of compound 22

M^+

$\text{RT: 7.61}
\text{AV: 1}
\text{NL: 2.93E8}
\text{T: FTMS + p ESI Full ms [150.0000-2000.0000]}$

$\text{m/z: 876.4919, 877.4952, 878.4980, 871.5369, 879.5003, 892.4659, 880.5038, 832.4661, 854.5120, 888.2886, 861.4458}$

$\text{1H NMR of compound 23}$

$\text{H NMR (CDCl$_3$, 400 MHz)}$

H
13C NMR of compound 23

HRMS of compound 23
1H NMR of compound 24

13C NMR of compound 24
HRMS of compound 24

1H NMR of compound 25
13C NMR of compound 25

HRMS of compound 25
1H NMR of compound 26

13C NMR of compound 26
HRMS of compound 26

1H NMR of compound 27
13C NMR of compound 27

HRMS of compound 27
1H NMR of compound 28

13C NMR of compound 28
HRMS of compound 28

1H NMR of compound 29
13C NMR of compound 29

HRMS of compound 29
1H NMR of compound 30

13C NMR of compound 30
HRMS of compound 30

\[
\begin{array}{l}
\text{m/z} \quad \text{Relative Abundance} \\
730.3981 \quad 100 \\
732.4040 \quad 75 \\
746.3717 \quad 65 \\
760.4088 \quad 55 \\
725.4432 \quad 45 \\
686.3721 \quad 35 \\
748.3738 \quad 25 \\
702.9202 \quad 15 \\
758.9288 \quad 5 \\
734.4089 \quad 1 \\
762.4174 \quad 0.5 \\
672.9072 \quad 0.5 \\
772.4669 \quad 0.5 \\
678.9644 \quad 0.5 \\
716.9432 \quad 0.5 \\
800.9197 \quad 0.5 \\
708.9736 \quad 0.5 \\
694.9557 \quad 0.5 \\
790.9132 \quad 0.5 \\
778.9296 \quad 0.5 \\
\end{array}
\]

1H NMR of compound 31

[Image of NMR spectrum]
13C NMR of compound 31

HRMS of compound 31
\(^1\)H NMR of compound 32

\(^{13}\)C NMR of compound 32
HRMS of compound 32

H NMR of compound 33
13C NMR of compound 33

HRMS of compound 33
1H NMR of compound 34

13C NMR of compound 34
19F NMR of compound 34

HRMS of compound 34
1H NMR of compound 35

13C NMR of compound 35
19F NMR of compound 35

HRMS of compound 35
1H NMR of compound 36

13C NMR of compound 36
19F NMR of compound 36

HRMS of compound 36
\(^1\)H NMR of compound 37

\(^{13}\)C NMR of compound 37
$^{19}\text{F NMR of compound 37}$

$^{19}\text{F NMR (CDCl}_3, 270\text{MHz)}$

$\text{HRMS of compound 37}$

$\text{RT: 10.62 AV: 1 NL: 2.73E7}$

$T: \text{FTMS + p ESI Full ms [150.0000-2000.0000]}$
1H NMR of compound 38

13C NMR of compound 38
19F NMR of compound 38

HRMS of compound 38
1H NMR of compound 39

13C NMR of compound 39
19F NMR of compound 39

HRMS of compound 39
1H NMR of compound 40

13C NMR of compound 40
19F NMR of compound 40

HRMS of compound 40
1H NMR of compound 41

13C NMR of compound 41
19F NMR of compound 41

HRMS of compound 41