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Experimental Description 

Sample preparation. The cryptophane-A derivative CrA-(COOH)6 was purchased from a 
commercial supplier and used without purification. The structure of CrA-(COOH)6 (Figure S1) is 
shown in the supporting information. As a stock solution, 1.22 mg CrA-(COOH)6 was dissolved in 
10 mL deionized water, and the pH was adjusted through addition of NaOH solution (1 M). The 
solution was then diluted to different concentration levels (10.5 nM, 105.0 nM, 1.05 μM, 10.5 μM, 
100.0 μM, 2.5 μM, 4.9 μM, 7.2 μM and 9.3 μM) for 129Xe NMR experiments. 
Hyperpolarized 129Xe NMR. Hyperpolarized 129Xe was generated with the spin exchange optical 
pumping technique using a commercial hyperpolarizer system (verImagin Healthcare, Wuhan, 
China). A xenon gas mixture consisting of 2% Xe (natural abundance), 10% N2, and 88% He was 
used. The temperature in the pumping cell was 418 K, and the gas mixture pressure was 65.7 psi. 
The average 129Xe spin polarization was approximately 10%.  
All NMR experiments were conducted on a 400 MHz wide-bore NMR spectrometer (Bruker Avance, 
Ettlingen, Germany) using a 10 mm BBO probe. A 10 mm tube containing the test sample was 
placed in magnet with the temperature controlled at 297 K. The sample was directly bubbled for 20 
s at a flow rate of 0.12 standard liters per minute, which was followed by a 3 s delay to allow the 
sample to remain stable before acquisition.  
The signals were referenced to the signal of free xenon in solution (0 ppm). 

Supplementary Information Text 

Section S1. Derivation of xenon host molecule concentration expression 

The dynamics of magnetization in the free Xe pool, MXe(t), and in the host molecule bound Xe, 
MCXe(t), was described during the periods of delay time t by Bloch–McConnell equations restricted 
to the following:1 

dMXe(t)

dt
= MXe

0 R1Xe − (kon + R1Xe)MXe(t) + koffMCXe(t)                          (A1) 

dMCXe(t)

dt
= MCXe

0 R1CXe + konMXe(t) − (koff + R1CXe)MCXe(t)                     (A2) 

The thermal equilibrium magnetizations were denoted as MXe
0  and MCXe

0 . The longitudinal relaxation 

rates were denoted as R1Xe and R1CXe. The inverse lifetimes of free Xe and Xe in the host molecule 

bound pools were denoted as koff and kon, respectively. To obtain a simple expression, some 

reasonable assumptions were made. First, the constant terms MXe
0  and MCXe

0  were negligible 

because of the very low thermal polarization compared with the hyperpolarized magnetizations 
MXe(t) and MCXe(t) prevailing during the experiments. Second, the longitudinal relaxation rate for 

xenon bound to host molecule, R1CXe, was less than a tenth of 1 hertz and can be completely 

ignored in (A2) in comparison with the dissociation rate koff, which was of the order of tens of hertz 
in aqueous solution and even higher in organic solvents. Disregarding R1Xe against kon in (A1) was 

not generally justified because of the smallness of kon, particularly at low host concentrations. The 
systems (A1) and (A2) became the following: 

dMXe(t)

dt
= −(kon + R1Xe)MXe(t) + koffMCXe(t)                                     (A1’) 

dMCXe(t)

dt
= konMXe(t) − koffMCXe(t)                                                     (A2’) 

The differential equations (A1’) and (A2’) were solved. 

MXe(t) = −C2e(tλ1) d−λ1

c
− C1e(tλ2) d−λ2

c
                                                (A3) 

MCXe(t) = C2e(tλ1) + C1e(tλ2)                                                               (A4) 
 
In which, c = kon, d = −koff, C1 and C2 were constants. 

 λ1 =
−kon−R1Xe−koff+√(koff−kon−R1Xe)2+4koffkon

2
                                       (A5) 

 λ2 =
−kon−R1Xe−koff−√(koff−kon−R1Xe)2+4koffkon

2
                                       (A6) 

Considering that koff ≫ kon > 0 and koff ≫ R1Xe > 0, we obtained (koff − R1Xe + kon)2 ≫ 4konR1Xe, 
and the expressions of λ1 and λ2 were simplified into the following:  
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λ1 =
−(kon + R1Xe + koff) + √(koff − R1Xe − kon)2 + 4konkoff

2
 

     =
−(kon + R1Xe + koff) + √(koff − R1Xe + kon)2 + 4konR1Xe

2
 

≈
−(kon + R1Xe + koff) + √(koff − R1Xe + kon)2

2
                   

≈ −R1Xe                                                      (A5’) 

λ2 =
−(kon + R1Xe + kof𝑓) − √(koff − R1Xe − kon)2 + 4konkoff

2
 

=
−(kon + R1Xe + kof𝑓) − √(koff − R1Xe + kon)2 + 4konR1Xe

2
 

≈
−(kon + R1Xe + koff) − √(koff − R1Xe + kon)2

2
                          

≈ −(kon + koff)                                                 (A6’) 

Before the free chemical exchange process started, t=0, and both e(tλ1)  and e(tλ2)  equaled 1. 

MXe(0) and MCXe(0) were the magnetizations of free Xe and host molecule bound Xe at t=0. Thus, 
equation (A3) and (A4) changed into the following:  

MXe(0) = −C2
−koff−λ1

kon
− C1

−koff−λ2

kon
                                                     (A3’) 

MCXe(0) = C2 + C1                                                                              (A4’) 
Then, we achieved the expressions of constant C1 and C2, as follows: 

C1 =
MXe(0)kon−MCXe(0)(koff−R1Xe)

R1Xe−kon−koff
                                                              (A7) 

C2 =
MXe(0)kon+MCXe(0)kon

−R1Xe+kon+koff
                                                                       (A8) 

As shown in Figure S2, the magnetization of free Xe and host molecule bound Xe after the nth 180° 

inversion pulse were denoted as MXe
(n)(0) and MCXe

(n) (0) respectively. The magnetizations of free Xe 

and host molecule bound Xe after delay time t for free exchange were respectively denoted as 

MXe
(n)(t) and MCXe

(n) (t). Furthermore, we defined a parameter 𝛽(𝑛−1), and MCXe
(n) (0) = −𝛽(𝑛−1)fr MXe

(n)(0), 

fr was the ratio between host molecule bound Xe and free Xe. The expressions of MXe
(n)(t) and 

MCXe
(n) (t) in equation (A3) and (A4) became the following: 

MXe
(n)(t) = −C2e(tλ1)

d − λ1

c
− C1e(tλ2)

d − λ2

c
 

≈ −
MXe

(n)(0)kon + MCXe
(n) (0)kon

−R1Xe + kon + koff

e(t(−R1Xe))
−koff − (−R1Xe)

kon

−
MXe

(n)(0)kon − MCXe
(n) (0)(koff − R1Xe)

R1Xe − kon − koff

e(t(−(kon+koff))) −koff − (−(kon + koff))

kon

 

≈ −
MXe

(n)(0)kon + (−𝛽(𝑛−1)fr MXe
(n)(0)) kon

−R1Xe + kon + koff

e(−tR1Xe)
−koff + R1Xe

kon

−
MXe

(n)(0)kon − (−𝛽(𝑛−1)fr MXe
(n)(0)) (koff − R1Xe)

R1Xe − kon − koff

e(−t(kon+koff))
kon

kon

 

≈ −
MXe

(n)(0)fr koff−𝛽(𝑛−1)fr MXe
(n)(0)fr koff

−R1Xe + fr koff + koff

e(−tR1Xe)
−koff + R1Xe

fr koff

−
MXe

(n)(0)fr koff + 𝛽(𝑛−1)fr MXe
(n)(0)(koff − R1Xe)

R1Xe − fr koff − koff

e(−t(kon+koff)) 

≈ −
MXe

(n)(0)−𝛽(𝑛−1)fr MXe
(n)(0)

−R1Xe + fr koff + koff

e(−tR1Xe)(−koff + R1Xe)

−
MXe

(n)(0)fr koff + 𝛽(𝑛−1)fr MXe
(n)(0)(koff − R1Xe)

R1Xe − frkoff − koff

e(−t(kon+koff)) 
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≈
MXe

(n)(0)−𝛽(𝑛−1)fr MXe
(n)(0)

−R1Xe + fr koff + koff

e(−tR1Xe)(koff − R1Xe)

+
MXe

(n)(0)fr koff + 𝛽(𝑛−1)fr MXe
(n)(0)(koff − R1Xe)

−R1Xe + fr koff + koff

e(−t(kon+koff)) 

≈ MXe
(n)(0)

1−𝛽(𝑛−1)fr

−R1Xe+fr koff+koff
e(−tR1Xe)(koff − R1Xe) + MXe

(n)(0)
fr koff+𝛽(𝑛−1)fr(koff−R1Xe)

−R1Xe+fr koff+koff
e(−t(kon+koff))                

(A9) 
 

MCXe
(n) (t) = C2e(tλ1) + C1e(tλ2) 

≈
MXe

(n)(0)kon + MCXe
(n) (0)kon

−R1Xe + kon + koff

e(t(−R1Xe)) +
MXe

(n)(0)kon − MCXe
(n) (0)(koff − R1Xe)

R1Xe − kon − koff

e(t(−(kon+koff)))
 

≈
MXe

(n)(0)fr koff + (−𝛽(𝑛−1)fr MXe
(n)(0)) fr koff

−R1Xe + fr koff + koff

e(t(−R1Xe))

+
MXe

(n)(0)fr koff − (−𝛽(𝑛−1)fr MXe
(n)(0)) (koff − R1Xe)

R1Xe − fr koff − koff

e(t(−(kon+koff)))
 

≈ MXe
(n)(0)e(t(−R1Xe))fr (

koff−𝛽(𝑛−1)fr koff

−R1Xe+fr koff+koff
+

koff+𝛽(𝑛−1)(koff−R1Xe)

R1Xe−fr koff−koff
e(t(R1Xe−(kon+koff))))               (A10) 

Considering that koff ≫ R1Xe > 0, we achieved (koff − R1Xe) ≈ koff and fr koff + koff − R1Xe ≈ (1 +

fr)koff. In addition, 
1

fr+1
≈ 1, because 1 ≫ fr. The expression (A9) and (A10) was further simplified 

into the following: 

MXe
(n)(t) ≈ MXe

(n)(0)
1−𝛽(𝑛−1)fr

(1 + fr)koff

e(−tR1Xe)koff + MXe
(n)(0)

fr koff + 𝛽(𝑛−1)fr koff

(1 + fr)koff

e(−t(kon+koff)) 

≈ MXe
(n)(0)

1−𝛽(𝑛−1)fr

(1 + fr)
e(−tR1Xe) + MXe

(n)(0)
fr + 𝛽(𝑛−1)fr

(1 + fr)
e(−t(kon+koff)) 

≈ MXe
(n)(0)e(−tR1Xe) (

1 + fr − fr−𝛽(𝑛−1)fr

(1 + fr)
+

(1 + 𝛽(𝑛−1))fr

(1 + fr)
e(−t(kon+koff−R1Xe))) 

≈ MXe
(n)(0)e(−tR1Xe)(1 − (1 + 𝛽(𝑛−1))fr + (1 + 𝛽(𝑛−1))fr e(−t(kon+koff−R1Xe))) 

≈ MXe
(n)(0)e(−tR1Xe) (1 − (1 + 𝛽(𝑛−1))fr(1 − e(−t(kon+koff−R1Xe))))        (A9’) 

MCXe
(n) (t) ≈ MXe

(n)(0)e(t(−R1Xe))fr (
(1 − 𝛽(𝑛−1)fr)koff

(1 + fr)koff

+
(1 + 𝛽(𝑛−1))koff

−(1 + fr)koff

e(t(R1Xe−(kon+koff)))) 

≈ MXe
(n)(0)e(t(−R1Xe))fr (

(1 − 𝛽(𝑛−1)fr)

(1 + fr)
−

(1 + 𝛽(𝑛−1))

(1 + fr)
e(t(R1Xe−(kon+koff)))) 

≈ MXe
(n)(0)e(t(−R1Xe))fr (

(1 + fr) − (1 + 𝛽(𝑛−1))fr − (1 + 𝛽(𝑛−1))e(t(R1Xe−(kon+koff)))

(1 + fr)
) 

≈ MXe
(n)(0)e(t(−R1Xe))fr (1 − (1 + 𝛽(𝑛−1)) (fr + e(t(R1Xe−(kon+koff)))))     (A10’) 

We defined another parameter α(n) as follows: 

α(n) =
MCXe

(n) (t)

fr MXe
(n)(t)

≈
MXe

(n)(0)fr e−R1Xet (1 − (1 + β(n−1))(fr + et(R1Xe−kon−koff)))

fr MXe
(n)(0)e−R1Xet(1 − (1 + 𝛽(𝑛−1))fr(1 − et(R1Xe−kon−koff)))

 

≈
(1−(1+β(n−1))(fr+et(R1Xe−kon−koff)))

(1−(1+𝛽(𝑛−1))fr(1−et(R1Xe−kon−koff)))

                                   (A11) 

In an off-resonance experiment, MXe
(n)(0) = MXe

(n−1)(t)e−R1Xetp  and MCXe
(n) (0) =

α(n)fr MXe
(n−1)(t)e−R1Xetp = −β(n)fr MXe

(n−1)(t)e−R1Xetp . Thus, β(n) = −α(n) . We obtained an iterative 

expression of free Xe magnetization that was related to the nth 180° inversion pulse-delay to the 
(n-1)th under arbitrarily delay time t, as follows: 
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MXe
(n)(t) ≈ MXe

(n−1)(t)e−R1Xetpe(−tR1Xe) (1 − (1 − α(n−1))fr(1 − e(−t(kon+koff−R1Xe))))               (A12) 

MCXe
(n) (t) ≈ MXe

(n−1)(t)e−R1Xetpe(t(−R1Xe))fr (1 − (1 − α(n−1)) (fr + e(t(R1Xe−(kon+koff)))))          (A13) 

α(n) ≈
(1−(1−𝛼(𝑛−1))(fr+et(R1Xe−kon−koff)))

(1−(1−𝛼(𝑛−1))fr(1−et(R1Xe−kon−koff)))

                                        (A14) 

With sufficient delay time for free chemical exchange, we obtained et(R1Xe−kon−koff) ≈ 0. Thus, we 

obtained α(n) ≈ 1 for arbitrarily 180° inversion pulse-delay number n. We further simplified MXe
(n)(𝑡) 

and MCXe
(n) (𝑡) into the following: 

MXe
(n)(t) ≈ MXe

(n−1)(t)e−R1Xetpe(−tR1Xe)                                             (A15) 

MCXe
(n) (t) ≈ MXe

(n−1)(t)e−R1Xetpe(t(−R1Xe))fr                                         (A16) 

Then, we obtained the magnetization expression of free Xe after the nth 180° inverse pulse-delay 
unit in an off-resonance experiment, as follows:  

MXe_off(t) ≈ MXe
(0)(0)e−nR1Xe(tp+t)                                                 (A17) 

However, in an on-resonance experiment, MXe
(n)(0) = MXe

(n−1)(t)e−R1Xetp  and MCXe
(n) (0) =

−α(n)fr MXe
(n−1)(t)e−R1Xetp = −β(n)fr MXe

(n−1)(t)e−R1Xetp . Thus, β(n) = α(n) . We obtained an iterative 

expression of free Xe magnetization that was related to the nth 180° inversion pulse-delay to the 
(n-1)th under arbitrarily delay time t, as follows: 

MXe
(n)(𝑡) ≈ MXe

(n−1)(t)e−R1Xetpe(−tR1Xe) (1 − (1 + 𝛼(𝑛−1))fr(1 − e(−t(kon+koff−R1Xe))))           (A18) 

MCXe
(n) (t) ≈ MXe

(n−1)(t)e−R1Xetpe(t(−R1Xe))fr (1 − (1 + 𝛼(𝑛−1)) (fr + e(t(R1Xe−(kon+koff)))))      (A19) 

α(n) ≈
(1−(1+𝛼(𝑛−1))(fr+et(R1Xe−kon−koff)))

(1−(1+𝛼(𝑛−1))fr(1−et(R1Xe−kon−koff)))

                                       (A20) 

With sufficient delay time for free chemical exchange, we obtained et(R1Xe−kon−koff) ≈ 0. Thus, we 

obtained α(n) ≈ 1 for arbitrarily 180° inversion pulse-delay number n. We further simplified MXe
(n)(𝑡) 

and MCXe
(n) (𝑡) into the following: 

MXe
(n)(t) ≈ MXe

(n−1)(t)e−R1Xetpe(−tR1Xe)(1 − 2fr)                               (A21) 

MCXe
(n) (t) ≈ MXe

(n−1)(t)e−R1Xetpe(t(−R1Xe))fr(1 − 2fr)                          (A22) 

Then, we obtained the magnetization expression of free Xe after the nth 180° inverse pulse-delay 
unit in an on-resonance experiment, as follows:  

MXe_on(t) ≈ MXe
(0)(0)e−nR1Xe(tp+t)(1 − 2fr)n                                  (A23) 

According to the definition of CEITR, we obtained the expression of CEITR, as follows: 

CEITR =
MXe_on(t)

MXe_off(t)
= (1 − 2fr)n                                                    (A24) 

Then, we achieved the ratio between host molecule bound Xe and free Xe, as follows: 

fr =
1−CEITR

1
n

2
                                                                          (A25) 

Finally, the host molecule concentration [HM] was quantified with the obtained fr, the binding 
constant K, and the free Xe concentration [Xe] 2 

[HM] = fr (
1

K
+ [Xe])                                                                 (A26) 

The fr was calculated from the CEIT experiment with formula (A25). The binding constant K was 
obtained by NMR spectroscopy method as shown in the next part. The free Xe concentration was 
achieved by the solubility of Xe in water and partial pressure of Xe with formula [Xe]=[Xe 
Solubility][Xe partial pressure]. 

Section S2. Measurement of the binding constant of CrA-(COOH)6 

The ratio fr of xenon in the host to free xenon was measured from peak integrals in the direct 129Xe 
NMR spectrum of 2.5 μM CrA-(COOH)6 solution (Figure S3). Noting that [HM] = [unoccupied HM] 
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+ [Xe@HM], in which [HM] stands for the host molecule concentration, [unoccupied HM] and 
[Xe@HM] were the concentrations of unbound and bound xenon host molecule, respectively. We 
rearranged the binding constant K as follows 2-3: 

K =
[Xe@HM]

[Xe]([HM] − [Xe@HM])
=

fr

[HM] − fr[Xe]

=
0.0036

2.500 − 0.0036 × (4.4 × 1000 × (
65.7

14.696
× 0.02))

μM−1 

≈ 3322 M−1 
Using the solubility of xenon in water4 (~4.4 mM/atm 297 K) and the known amount of host added, 
we then calculated the binding constant K. The direct spectrum was integrated to determine fr, as 
shown below.  

Section S3. Analysis of the standard deviation of concentration determination 

As shown in equation (A26), the concentration of the xenon host molecule was proportional to fr 
with the known binding constant and free xenon concentration. While for fr, the standard deviation 
was obtained as follows: 

σfr
2 = (

∂fr

∂CEITR
)

2

σCEITR
2 = (

CEITR
1
n−1

2n
)

2

σCEITR
2                                   (A27) 

The relative deviation of fr was shown to be:  

RDfr =
σfr

fr
=

CEITR
(

1
n−1)

n(1−CEITR
1
n)

σCEITR                                                   (A28) 

The σCEITR term was determined by the noise level during the measurement. The minimum value 

of term 
CEITR

(
1
n−1)

𝑛(1−CEITR
1
n)

 could be obtained when CEITR = (1 −
1

𝑛
)

𝑛

→ 𝑒−1 ≈ 0.368. Thus, when CEITR is 

e-1 or close to it, the minimum RDfr will be obtained. To obtain a minimum Rfr, an optimal cycle 
number Nopt can be calculated using a measured CEITR under cycles number N by the formula 
below: 

Nopt = −
N

ln(CEITR)
                                                                       (A29) 
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Figure S1. The structure of CrA-(COOH)6. R=-CH2COOH. 
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Figure S2. The CEIT pulse sequence diagram. The 180° pulses are selective inversion pulses, t 
is the interval time between 180° pulses, and n is the number of pulse-interval unit repeat time. 
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 Figure S3. 2.5 μM CrA-(COOH)6 129Xe NMR spectroscopy with NS=64. 
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Figure S4. The local CEIT z-spectra achieved with different experimental settings (blue: 2.5 μM, 
100 cycles, td=150 ms; red: 2.5 μM, 200 cycles, td=120 ms; grey: 4.9 μM, 100 cycles, td=150 ms; 
orange: 2.5 μM, 200 cycles, td=21 ms). 
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Figure S5. The exchange rate fitting of 2.5 μM CrA-(COOH)6 at 297 K and 65.7 psi. The fitted 

exchange rate k is about 15.35 Hz using the following equation (y = A (1 − 2𝐵(1 − 𝑒−𝑘(𝑡−𝐶)))
100

, 

data: blue squares, fit: black line). 
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Figure S6. DLS data showing size distribution by number in aqueous solution at 298 K of 100.0 
μM CrA-(COOH)6 (average diameter=357.0 nm, PdI=0.463) and 10.5 μM CrA-(COOH)6 (no 
aggregation observed). 
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Figure S7. The comparison of the measured CrA-(COOH)6 concentrations and prepared CrA-
(COOH)6 concentrations ranges from 10.5 nM to 10.5 μM. The number of cycles N of concentration 
from low to high are 800, 800, 200 and 50, respectively. The measured CrA-(COOH)6 
concentrations agree well with the prepared CrA-(COOH)6 concentrations (y=1.182x+9.654, 
R2=1.000). 
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Figure S8. The CEIT effect of sample S1 (green), S2 (red), S3 (blue) under variable unit repeat 
numbers (200, 100, 50, 25, and 12 cycles, td=150 ms). 
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