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Abstract: Conformational change of cytochrome c (cyt c) caused by interaction with cardiolipin
(CL) is an important step during apoptosis, but the underlying mechanism is controversial. To
comprehensively clarify the structural transformations of cyt c upon interaction with CL and avoid
the unpredictable alias that might come from protein labeling or mutations, the conformation of
purified yeast iso–1 cyt c with natural isotopic abundance in different contents of CL was measured
by using NMR spectroscopy, in which the trimethylated group of the protein was used as a natural
probe. The data demonstrate that cyt c has two partially unfolded conformations when interacted
with CL: one with Fe–His33 coordination and the other with a penta–coordination heme. The Fe–
His33 coordination conformation can be converted into a penta–coordination heme conformation in
high content of CL. The structure of cyt c becomes partially unfolded with more exposed heme upon
interaction with CL, suggesting that cyt c prefers a high peroxidase activity state in the mitochondria,
which, in turn, makes CL easy to be oxidized, and causes the release of cyt c into the cytoplasm as a
trigger in apoptosis.

Keywords: NMR; cytochrome c; cardiolipin; conformation; methyl

1. Introduction

Cyt c is a vital multifunctional protein critical for both respiration and apoptosis [1].
During apoptosis, the interaction between cyt c and CL has been suggested to play a
key role in the release of cyt c from the mitochondria [2]. CL is abundant in the inner
mitochondrial membrane (IMM), accounting for 25% of the total lipid content [3]. It
migrates from the IMM to the outer mitochondrial membrane (OMM) in the preapoptotic
stage [4,5]. CL is negatively charged, while the surface of cyt c is positively charged. Cyt
c interacts with CL through four binding sites, namely Site A (Lys72, Lys73, Lys86, and
Lys87) [6–8], Site C (Asn52) [9], Site L (Lys22, Lys27, His26, and His33) [10], and Site N
(Phe36, Gly37, Thr58, Trp59, and Lys60) [11].

The conformation of cyt c transforms into some conformers with extremely high
peroxidase activity when it binds to CL [12], which, in turn, makes it possible to oxidize
CL as a peroxidase and then alter the permeability of the OMM in response to the release
of the protein [13]. The peroxidase activity of cyt c has always been accompanied by the
conformational transition [14].
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However, the conformational changes of cyt c is still a controversial issue. Based on
hydrogen–deuterium exchange mass spectrometry and ion mobility–mass spectrometry
results, cyt c has been found to adopt a more compact configuration, with no evidence of
global unfolding when bound to CL [15]. However, results from time–resolved fluorescence
resonance energy transfer experiments suggest that cyt c becomes partially unfolded
when binding with CL, and the Fe–Met80 bond of cyt c is broken and replaced by other
residues [12,16]. Some studies propose that Met80 is replaced by a lysine [15,17], while
other studies suppose it is replaced by a histidine [18]. There are still a few studies that
suggest the Fe–Met80 bond is merely broken and results in a penta–coordination heme [19].

This controversy may exist because the altered conformations of cyt c upon CL interac-
tion are heterogeneously assembled, undergo exchange, and are sensitive to the conditions
of the experiments [20]. Spectroscopies that are sensitive to specific conformations may
result in partial loss of information. NMR spectroscopy can simultaneously identify and
monitor different molecules or conformers “without prejudice” and provide protein struc-
ture information at atomic resolution. It has been successfully used to detect the binding
site of cyt c upon interaction with CL [21,22]. However, it is difficult to be used to ob-
serve structural changes at a high CL/cyt c molar ratio, as cyt c, when bound to large,
slow–tumbling liposomes, has a higher correlation time, causing a decrease in NMR signal
intensity [23,24], which, in turn, results in the disappearance of 1H–15N HSQC signals
of cyt c upon interaction with high content of CL [22]. Additionally, data obtained from
mutations or labeled molecules may induce alias information, as it was found that the
structure of the usually used mutation of trimethyllysine 72 to alanine lost the Met80 heme
ligand, causing a fourfold increase in peroxidase activity relative to monomeric cyt c [25],
and the mutation of trimethyllysine 72 to alanine enhanced the His79–heme–mediated
dynamics of iso–1 cyt c [26].

Herein, to obtain comprehensive information about the conformers of cyt c upon
interaction with CL, and avoid the unpredictable alias results that might come from protein
labeling or mutations, 1H–13C NMR was used to investigate the conformational change
of purified yeast iso–1 cyt c with natural isotopic abundance upon interaction with CL. In
yeast cells, though the downstream pathways of cyt c are not yet clear [27], it has also been
found that cyt c is released from the mitochondria into the cytoplasm when it undergoes
apoptosis induced by acetic acid [28,29], H2O2 [30], or electric fields [31]. As a typical
feature of yeast iso–1 cyt c, the Lys72 of the protein is trimethylated [26,32].

In this manuscript, the methyl of the trimethylated Lys72 (Lys72me3) of cyt c was
used as a natural probe for the conformational transition of cyt c. Methyl has been widely
used as a sensitive NMR probe to observe protein structure due to its slow transversal
relaxation [33–35]. The modified Lys72me3 has nine equivalent protons located on the
surface of the protein, making it possible to be applied to monitor the conformational
transition of natural isotopic abundance protein in a large complex. 1H–14N HSQC is
powerful at simplifying spectra of trimethylated proteins [36]; however, the small 2J1H, 14N
coupling constant makes it difficult to be used to probe the macromolecule complex.
Herein, to accurately trace the modified methyl, 2D four–quantum–filtered maximum–
quantum correlation 1H–13C HMQC (MAXY–HMQC) was applied to filter out signals
other than methyl groups. MAXY–HMQC, developed by Liu et al. [37], can selectively
detect the signals of methyl, methylene, and methylene separately and simplify the spectra
of biomolecules [38,39]. The chemical shift of the modified Lys72me3 methyl is far away
from the side chain methyls both in the 1H and 13C dimensions; therefore, 1H–13C NMR
can be used to trace the methyl. Because the trimethylated group has nine equivalent
protons, the method is sensitive to the conformational changes of cyt c [32] and used to
probe the conformational change of cyt c upon interaction with different contents of CL,
even though the high concentration of CL and cyt c interact to form large complexes [23,24].

The results show that the conformation of cyt c changed from a native conformation
to two extended conformations upon interaction with high content of CL, in which the
Fe–Met80 bond was broken and resulted in a bis–His hexa–coordination and a penta–
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coordination heme simultaneously. The state with a penta–coordination heme seems to be
more stable and preferable upon interaction with CL, as the content of this state gradually
increased with further enhancement of the ratio of CL to cyt c. These results indicate
that the preferred conformation of cyt c was different in the presence of different contents
of CL, making it reasonable that cyt c obtains high peroxidase activity, as the heme is
more exposed in the preferable penta–coordination state [40], which is consistent with the
characterization of other peroxidases [41].

2. Materials and Methods
2.1. Chemicals

Yeast iso–1 cyt c and CL were purchased from Sigma Aldrich (Merck, Burlington, MA,
USA). Cyt c was further purified using the method reported previously [42] and dissolved
in phosphate buffer (PB, 20 mM, pH 7.0) (Sinopharm Chemical ReagentCo., Ltd., Shanghai,
China) before use. The purity of the protein was then identified by mass spectrometry.
The CL liposome was prepared according to a previously reported protocol [43,44]. A
5 mL ethanol solution of CL was evaporated under vacuum using a rotary evaporator
at 318 K until the liquid was converted into an adherent film. Then, a 1 mL precooled
solution of 20 mM PB was used to dissolve the CL film at 277 K. After that, the solution
was sonicated in an ice bath for 15 min to obtain dispersed and uniform CL liposomes. The
CL liposome was refrigerated (277 K) and sonicated for 10 min before use. The particle
size and uniformity of the prepared CL liposome were measured by using dynamic light
scattering (DynaPro NanoStar, Wyatt, Santa Barbara, CA, USA).

2.2. NMR Experiments

All NMR experiments were conducted in a Bruker Avance III 850 MHz NMR spec-
trometer equipped with a TXI cryoprobe. All the spectra were acquired at 298 K. To identify
the modified methyl groups, 2D MAXY–HMQC was performed [38], in which the spectral
widths of 1H and 13C dimensions were 15.00 ppm and 70.00 ppm, respectively.

To trace the change of the modified methyl groups more sensitively, 2D 1H–13C HSQC
was used to replace the MAXY–HMQC spectra. For the HSQC spectra, the spectral widths
of 1H and 13C dimensions were 15.00 ppm and 20.00 ppm, respectively. The data were
acquired with complex sampling points of 2048 and 64 for the 1H and 13C dimensions,
respectively. The number of scans was 64. The experimental data were processed using
Bruker Topspin 4.0.1 software (Bruker, Billerica, MA, USA).

2.3. CD, Fluorescence, and –Visible Absorption Spectra Experiments

To further identify the possible characterization of the conformational transition, CD,
fluorescence, and UV–visible absorption spectra were also obtained. CD experiments were
carried out using a Chirascan CD spectrometer (Applied Photophysics, Leatherhead, UK)
in the wavelength range of 190–260 nm with a 0.1 cm cuvette. Fluorescence and UV–visible
absorption experiments were carried out using a SpectraMax i3x multimode plate reader
(Molecular Devices, San Jose, CA, USA). Fluorescence emission spectra were recorded in
the wavelength range of 300–500 nm (sensitive to the Trp50 to heme distance) with an
excitation wavelength of 289 nm and in the wavelength range of 465–600 nm (thioflavin
T fluorescent) with an excitation wavelength of 440 nm, respectively. The UV–visible
absorption spectra were conducted in the wavelengths of 350–450 nm and 600–800 nm,
respectively.

3. Results
3.1. Identification of Different Conformations of Cyt C at a Natural Isotopic Abundance

To identify the resonance of Lys72me3 from different cyt c conformations,
four–quantum–filtered 1H–13C MAXY–HMQC was applied to monitor the methyl of
cyt c in different conditions. In the four–quantum–filtered MAXY–HMQC spectra, theoret-
ically, except those of methyl groups, all signals from other groups are unobservable, as
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shown in Figure 1. Compared with the normal 1H–13C HSQC (Figure 1a), the signals in the
four–quantum–filtered 1H–13C MAXY–HMQC spectra of cyt c are simplified (Figure 1b).

Life 2021, 11, x FOR PEER REVIEW 4 of 13 
 

 

3. Results 

3.1. Identification of Different Conformations of Cyt C at a Natural Isotopic Abundance 

To identify the resonance of Lys72me3 from different cyt c conformations, 

four−quantum−filtered 1H−13C MAXY−HMQC was applied to monitor the methyl of cyt c 

in different conditions. In the four−quantum−filtered MAXY−HMQC spectra, theoreti-

cally, except those of methyl groups, all signals from other groups are unobservable, as 

shown in Figure 1. Compared with the normal 1H−13C HSQC (Figure 1a), the signals in 

the four−quantum−filtered 1H−13C MAXY−HMQC spectra of cyt c are simplified (Figure 

1b). 

Because the 13C and 1H chemical shifts of the modified methyl groups are much larger 

than those of the other side chain, the signals of Lys72me3 can easily be identified by ob-

serving the signals in the low−field region of the spectra, as indicated in Figure 1b. 

The enlarged low−field regions of the four−quantum−filtered 1H−13C MAXY−HMQC 

spectra of cyt c under different conditions are shown in Figure 1. The resonances of 

Lys72me3 in the native ferrous Fe−Met80 state (denoted R state) and in the ferric Fe−Met80 

state (denoted O state) of cyt c can be assigned easily to the signals with 1H chemical shifts 

of 2.85 ppm and 3.31 ppm, respectively [45], according to the MAXY−HMQC spectra of 

cyt c with extra sodium L−ascorbate (SLA) (Figure 1c) and K3[Fe(CN)6] (Figure 1d). In 

Figure 1d, the weak signal at 3.38 ppm in the 1H dimension can be assigned to another 

ferric conformer with a different coordination form of heme [36]. There are two non−na-

tive states for cyt c, both with Fe−Lys coordination (denoted K state). They are states with 

Fe−Lys73 (denoted Ka state) and Fe−Lys79 (denoted Kb state) coordination, respectively. 

The two states predominate under acidic and alkaline conditions, respectively [46,47]. 

Therefore, we infer the weak signal comes from the Ka state because it also exists in the 

spectra under alkaline conditions (Figure 1h). The existence of this non−native conformer 

may come from the oxidative stress during protein extraction and purification because the 

state is found to exist when the cells undergo oxidative stress [16]. 

 

Figure 1. NMR spectra of cyt c with different conformations. (a,b) 1H−13C HSQC and four−quan-

tum−filtered MAXY−HMQC spectra of cyt c, respectively. (c–h) Enlarged four−quantum−filtered 
1H−13C MAXY−HMQC spectra of cyt c in different conditions. (c–f) Spectra of 0.3 mM cyt c in the 

presence of 1.0 mM SLA, 1.0 mM K3[Fe(CN)6], 1.0 M GuHCl, and 1.0 mM H2O2, respectively. (g,h) 

Spectra of 0.3 mM cyt c at pH 7.0 and 10.4, respectively. 

Figure 1. NMR spectra of cyt c with different conformations. (a,b) 1H–13C HSQC and four–quantum–
filtered MAXY–HMQC spectra of cyt c, respectively. (c–h) Enlarged four–quantum–filtered 1H–13C
MAXY–HMQC spectra of cyt c in different conditions. (c–f) Spectra of 0.3 mM cyt c in the presence
of 1.0 mM SLA, 1.0 mM K3[Fe(CN)6], 1.0 M GuHCl, and 1.0 mM H2O2, respectively. (g,h) Spectra of
0.3 mM cyt c at pH 7.0 and 10.4, respectively.

Because the 13C and 1H chemical shifts of the modified methyl groups are much larger
than those of the other side chain, the signals of Lys72me3 can easily be identified by
observing the signals in the low–field region of the spectra, as indicated in Figure 1b.

The enlarged low–field regions of the four–quantum–filtered 1H–13C MAXY–HMQC
spectra of cyt c under different conditions are shown in Figure 1. The resonances of
Lys72me3 in the native ferrous Fe–Met80 state (denoted R state) and in the ferric Fe–Met80
state (denoted O state) of cyt c can be assigned easily to the signals with 1H chemical shifts
of 2.85 ppm and 3.31 ppm, respectively [45], according to the MAXY–HMQC spectra of
cyt c with extra sodium L–ascorbate (SLA) (Figure 1c) and K3[Fe(CN)6] (Figure 1d). In
Figure 1d, the weak signal at 3.38 ppm in the 1H dimension can be assigned to another
ferric conformer with a different coordination form of heme [36]. There are two non–native
states for cyt c, both with Fe–Lys coordination (denoted K state). They are states with
Fe–Lys73 (denoted Ka state) and Fe–Lys79 (denoted Kb state) coordination, respectively.
The two states predominate under acidic and alkaline conditions, respectively [46,47].
Therefore, we infer the weak signal comes from the Ka state because it also exists in the
spectra under alkaline conditions (Figure 1h). The existence of this non–native conformer
may come from the oxidative stress during protein extraction and purification because the
state is found to exist when the cells undergo oxidative stress [16].

The spectra of the denatured protein vary by using different reagents (Figure 1e,f).
The 1H chemical shift of the resonance in the spectra with extra GuHCl is lower than
that with extra H2O2. This result seems to be rational, as it was reported previously
that the conformers of cyt c denatured by GuHCl and H2O2 are structures with a ferric
bis–His hexa–coordination (denoted H state) and penta–coordination heme (denoted P
state), respectively [48,49]. Accordingly, the resonances with 1H chemical shifts of 2.98 and
3.01 ppm are partially unfolded cyt c in the H and P states, respectively [50,51]. It was
reported that His26 was involved in Fe coordination only when His33 was missing [52];
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therefore, this H state observed may mainly be a state with Fe–His33 coordination. There
are three signals that coexist in the spectra of cyt c at pH 7.0 (Figure 1g), indicating that
the O, R, and K states coexist under neutral conditions. This result coincides with the 14N–
filtered NMR experiments reported previously [36]. Under alkaline conditions (Figure 1h),
three different conformers coexist, as three signals were found in the MAXY–HMQC spectra
of cyt c at pH 10.4. According to the assignments mentioned above, this result indicates that
part of cyt c is still folded in the K state, whereas part of cyt c becomes partially unfolded
in the H state.

The above results show that six different conformations of cyt c can be identified by
measuring the modified methyl using NMR; therefore, it suggests that methyl–selective
NMR detection is powerful to study the conformational transition of methylated protein at
natural isotopic abundance.

3.2. Trace of Conformational Changes of Cyt C upon Interaction with CL

Lys72me3 is a sensitive probe for the conformational transition of cyt c; therefore, the
interaction between cyt c and CL was monitored by observing the modified methyl using
NMR spectroscopy. Because the resonance of K72me3 is distinguishable from other reso-
nances, 2D 1H–13C HSQC spectra were applied to monitor the conformational transition of
cyt c upon interaction with CL for higher sensitivity. The results are shown in Figure 2, in
which the region that Lys72me3 locates is enlarged. Three resonances corresponding to cyt
c in the R, O, and Ka states coexist in the absence of the CL liposome, which is the same as
that of the MAXY–HMQC spectra, indicating that 1H–13C HSQC can be used to trace the
change of Lys72me3.
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With the addition of the CL liposome, the NMR spectra of cyt c changed by several
degrees. At low CL/cyt c ratios, all three signals were gradually weakened (Figure 2b,c)
and disappeared with increasing CL concentration from 1 to 4 times cyt c. This indicates
that all conformers of cyt c interact with CL. Cyt c, when bound to large, slow–tumbling
liposomes, has a higher correlation time, causing a decrease in NMR signal intensity in
the HSQC spectra. Nevertheless, the relative content of the O state of cyt c increases in
comparison with the other two conformers, which suggests that conformational transition
and oxidization are induced by the interaction. The results coincide with the report that
the addition of CL promotes the conversion of cyt c from ferrous state to ferric state [44].

It was found that the conformational transition continued to occur as the CL/cyt c
ratios increased. When the CL content was 4 times that of cyt c, two new conformers
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appeared with the disappearance of the former three conformers. As assigned above, the
two new conformers were cyt c in the H and P states, respectively. This result coincides
with the report that the conformation of cyt c changed in combination with the CL lipo-
some [18,19]. When the content of CL further increased, the resonance of P state increased
with the disappearance of the resonance of H state.

Compared with the normal 1H–15N NMR detection, which cannot detect protein un-
der high CL content [22], these results show that modified methyl detection is a powerful
method to study the conformational transition of methylated protein and indicate that cyt
c undergoes multiple conformational transformations upon interaction with different con-
tents of CL. Upon interaction with CL, native O and R states of cyt c both become partially
unfolded. However, unlike those reported before, two partially unfolded conformers of cyt
c were found to coexist and transit to each other. When the content of CL further increased,
the H–state protein transited into a P–state protein. It has been found that the content of CL
in the outer membrane of the mitochondria usually increases along with apoptosis [4], and
the exposure of heme is usually accompanied by higher peroxidase activity [51]. Therefore,
these results indicate that cyt c preferred to be in a state with high peroxidase activity when
inserted into the membrane of mitochondria. Because the increase of CL content induces
the protein to be in a conformation with higher peroxidase activity, the migration of CL
might also be an action against oxidative stress.

3.3. The Structure of Cyt C Becomes Expanded upon Interaction with CL

To further clarify the conformational change of cyt c upon interaction with CL in
detail, fluorescence, UV–visible, and CD spectra were also obtained (Figure 3).

The intensity of the fluorescence representing the gradual exposure of Trp59 on cyt c
enhanced with increasing CL content [53], which means that the binding of CL induces
the exposure of the heme. A shift to a higher wavelength (red shift) was visible in the
spectra by adding CL to the solution. This phenomenon is generally related to a shift
from a less exposed to a more exposed Trp59, which also suggests the exposure of the
heme. (Figure 3a). The decreased absorption at 695 nm in the UV–visible spectra indicates
that the Fe–Met80 bond of cyt c is gradually broken [49] and suggests that CL binding
causes the rupture of the Fe–Met80 bond of cyt c (Figure 3b). The CD spectrum indicates
that the secondary structure of cyt c gradually changes [48], with a significant reduction
in α–helix and an increase in β–sheets (Figure 3c). Extracting the secondary structure
percentages from the CD spectra showed that the percentage of α–helix weakened from
59.6% to 24.9%, but the percentage of β–sheets strengthened from 8.2% to 24.6%. The
increase in β–sheets has been further identified by using a thioflavin T (ThT) fluorescence
probe, which specifically binds to β–sheets of protein [54]. The enhanced fluorescence
of ThT at 480 nm indicated that the interaction induced the increase in β–sheets in cyt c
(Figure 3d).

Because the increase in β–sheets is usually associated with the aggregation of pro-
teins [54], SDS–PAGE was used to monitor the aggregation states of cyt c (Figure 4a) and
detect the possible driving force of the aggregation (Figure 4b). The result validates that
the aggregation of cyt c can be induced by CL driven by electrostatic interaction and is
consistent with recent research that the oligomerization of cyt c can be induced by CL [55].
The peroxidase activity of cyt c is increased by dimerization and oligomerization [56,57].
Therefore, the results indicate that CL induced the aggregation of cyt c, which also pro-
moted the peroxidase activity of the protein. This aggregation may also be one of the main
reasons for the decrease in and disappearance of NMR signals.
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of different contents of CL. M: unstained protein molecular weight marker; Lane 1: cyt c: CL = 1:0;
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influence of NaCl. (b) Effect of NaCl on the interaction of cyt c and CL; Lane 10: cyt c: CL = 1:32 with
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3.4. Redox Conversion of Cyt C

The redox states of cyt c are also important for the function of the protein [58]. The
characteristic absorption in the UV–visible spectra of cyt c can be used to distinguish
the ferric and ferrous states of the protein [49]. As shown in Figure 5a, the UV spectra of
ferrous and ferric cyt c are different from each other. Ferrous and ferric cyt c are prepared by
adding additional sodium ascorbate and K3[Fe(CN)6], respectively. In Figure 5b, for ferrous
cyt c, the UV absorption at 522 nm and 550 nm gradually decreased with the increase
in CL, the characterized absorption at 415 nm gradually blue–shifted to 409 nm, and a
new absorption at 529 nm appeared. These new phenomena are typical characteristics of
ferric cyt c. However, for ferric cyt c (Figure 5c), no blue or red shift appears in the UV
spectra even at high content of CL liposome. This indicates that ferrous cyt c is oxidized to
ferric cyt c, and the coordination of heme changes upon interaction with CL. This result is
consistent with our observations by NMR and a previous report [44].
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4. Discussion

The conformational changes of cyt c upon interaction with CL was found to play a
key role in apoptosis; however, it is still a controversial issue, because the altered confor-
mation of cyt c upon CL interaction is heterogeneously assembled during the exchange
equilibrium [20] and sensitive to the conditions of the experiments.

To comprehensively reveal the conformational change of cyt c upon interaction with
CL, and avoid unpredictable results that might come from protein labeling or mutations, the
conformers of cyt c with natural isotopic abundance extracted from yeast upon interaction
with CL were detected.

By using 2D four–quantum–filtered maximum–quantum correlation 1H–13C HMQC
spectroscopy, six different conformations of cyt c with natural isotopic abundance were
successfully identified, which demonstrates that this technique is superior in simplifying
the NMR spectrum of methylated proteins. Therefore, it is a good tool to detect the
conformational change of methylated proteins that are difficult to overexpress with the
modification. As the modified groups usually have more equivalent protons, the method
may also be used to study the protein under the abundance of natural isotopes.

By tracing the modified methyl of cyt c, it was found that the interaction between
cyt c and CL leads to a series of conformational transitions of cyt c. Upon interaction, the
structure of cyt c becomes expanded with the rupture of the normal Fe–Met80 bond and
the exposure of heme. Because the content of CL in the OMM increases with apoptosis,
the conformational transitions of cyt c may also be a stress reaction to apoptosis, as can be
described in the diagram shown in Figure 6.
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Figure 6. Model diagram of the interaction between cyt c and CL. (a) When the cell is in the normal
condition, the distribution of CL in the OMM is limited, and there are interactions between CL and
cyt c in different states. (b) When the CL is gradually transferred from the IMM to the OMM, the
interaction between cyt c and CL induces the conformation transition of cyt c. (c) When the CL
content continues to increase, the H state cyt c can transform into P state. (d) When the content of CL
is further increased, the most of the cyt c are in P state.

When the cell is in the normal condition, the distribution of CL in the OMM is limited,
and interaction with CL makes cyt c in different normal states (O, R, and Ka states) all
insert into the membrane. However, as the content of CL is relatively lower, only part of
cyt c is inserted (Figure 6a).

When CL is gradually transferred from the IMM to the OMM stimulated by oxidative
stress or apoptosis, the interaction between cyt c and CL in OMM enhances, which, in
turn, induces the conformation transition of cyt c (Figure 6b,c). The Fe–Met80 bond in the
native structure of cyt c is broken, and the protein appears to be partially unfolded with
more β–sheets, some of which are in the H state, and some of which are in the P state.
At the same time, the protein becomes aggregated. This aggregation, in turn, increases
the insertion number of the protein in the membrane. Additionally, it was found that the
conformation of cyt c in the H state can transit to the P state upon interaction with further
increased content of CL (Figure 6d).

In summary, the structure of cyt c becomes partially unfolded with more exposed
heme upon interactions with increased content of CL. Because Fe is the core of the protein
for oxidation and reduction, it makes it reasonable that yeast cyt c has high power against
apoptosis [59]. Additionally, cyt c is oxidized upon interaction with CL, which might
correlate with the oxidation of CL, which, in turn, alters the permeability of the OMM of
the mitochondria, and then causes the release of the protein into the cytoplasm, triggering
apoptosis.
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