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Abstract
The interaction effect between collateral circulation and ischemic core size on stroke outcomes has been highlighted in acute 
ischemic stroke (AIS). However, biomarkers that assess the magnitude of this interaction are still lacking. We aimed to present 
a new imaging marker, the collateral-core ratio (CCR), to quantify the interaction effect between these factors and evaluate its 
ability to predict functional outcomes using machine learning (ML) in AIS. Patients with AIS caused by anterior circulation large 
vessel occlusion (LVO) were recruited from a prospective multicenter study. CCR was calculated as collateral perfusion volume/
ischemic core volume. Functional outcomes were assessed using the modified Rankin Scale (mRS) at 90 days. An ML model was 
built and tested with a tenfold cross-validation using nine clinical and four imaging variables with mRS score 3–6 as unfavorable 
outcomes. Among 129 patients, CCR was identified as the most important variable. The prediction model incorporating clinical 
factors, ischemic core volume, collateral perfusion volume, and CCR showed better discriminatory power in predicting unfavora-
ble outcomes than the model without CCR (mean C index 0.853 ± 0.108 versus 0.793 ± 0.133, P = 0.70; mean net reclassification 
index 52.7% ± 32.7%, P < 0.05). When patients were divided into two groups based on their CCR value with a threshold of 0.73, 
unfavorable outcomes were significantly more prevalent in patients with CCR ≤ 0.73 than in those with CCR > 0.73. CCR is a 
robust predictor of functional outcomes, as identified by ML, in patients with acute LVO. The prediction model that incorporated 
CCR improved the model’s ability to identify unfavorable outcomes. ClinicalTrials.gov Identifier: NCT02580097.
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Introduction

Growing evidence highlights the impact of collateral circula-
tion on clinical outcomes in patients with large-vessel stroke 
[1–3]. The ischemic core is also likely to vary between 

patients with respect to their collateral flow status. Clinical 
postulation states that acute ischemic stroke is proportional 
to the collateral circulation and inversely proportional to the 
ischemic core volume (clinical outcome measure = collateral 
circulation/ischemic core); this is well accepted, suggesting 
that an interaction effect between collateral circulation and 
ischemic core size may exist. Biomarkers that measure the 
magnitude of this interaction effect may provide valuable 
prognostic information on clinical outcomes. However, to 
date, no such biomarker has been reported.

Unlike quantitative hypoperfusion volume measure-
ments, which are widely implemented in clinical trials using 
advanced software [4–6], collateral circulation is commonly 
assessed by semi-quantitative scores, and the volume of col-
lateral flow cannot be routinely obtained. A recent study 
reported that the volume of perfusion from collateral flow 
(collateral perfusion volume) can be visualized and measured 
clinically using dual post-labeling delay (PLD) arterial spin 
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labeling (ASL) [7]. This approach processes the cerebral 
blood flow (CBF) at PLDs of 1500 ms and 2500 ms; thus, 
the late-arriving collateral inflow in the target downstream 
territory can be captured. It has been demonstrated that the 
collateral perfusion volume is associated with ischemic events 
in patients with middle cerebral artery stenosis. By utilizing 
this technology, it is possible to determine the relationship 
between the collateral perfusion volume and ischemic core 
volume. Additionally, the implementation of machine learn-
ing (ML) techniques, which are being increasingly applied 
in solving medical prediction tasks [8–10], allows for bet-
ter feature selection and improves the accuracy of model 
construction.

Herein, we propose a new imaging marker, the collateral-
core ratio (CCR), to quantify the magnitude of the interac-
tion effect between collateral and ischemic core volumes. 
This study aimed to evaluate the ability of CCR to predict 
functional outcomes in patients with acute ischemic large 
vessel occlusive stroke using ML.

Methods

Study Design

The MR-based stroke mechanism and future risk score (MR-
STARS) was a prospective multicenter observational study 
that recruited patients from 15 centers in China. Enrollment 
took place between January 1, 2019, and December 31, 
2020. The study was approved by the institutional review 
boards of the participating institutions and registered at 
ClinicalTrial.gov (NCT02580097). Written informed con-
sent was obtained from all the patients.

Patients

The inclusion criteria were as follows: (1) age > 18 years, 
(2) acute ischemic stroke caused by distal internal carotid 
artery or middle cerebral artery M1-M3 segment occlu-
sion, (3) time from last known time of wellness to symp-
tom onset within 24 h, (4) pre-stroke modified Rankin Scale 
(mRS) score 0–2, (5) availability of written informed con-
sent, and (6) sufficient imaging quality for post-processing 
and review. The exclusion criteria were as follows: (1) 
other serious, advanced, or terminal illnesses or life expec-
tancy < 3 months; (2) pregnancy; (3) time from last known 
time of wellness to symptom onset of > 24 h; (4) old lesions 
greater than 1/3 downstream territory or pre-stroke mRS 
score > 2; (5) loss to follow-up; and (6) insufficient imaging 
quality. The patient selection flowchart is shown in Fig. 1.

MRI Protocol

All MR studies were performed soon after patient arrival 
at the centers using a 3.0 T scanner (Discovery 750, GE 
Healthcare, Milwaukee, WI, USA) with a 32/8 channel head 
coil by a technician in the Department of Radiology without 
blinding. The MR protocol was as follows: T2-weighted 
imaging (WI), T1WI, T2 fluid-attenuated inversion recov-
ery, diffusion-weighted imaging (DWI), MR angiography, 
three-dimensional pseudo-continuous arterial spin labeling 
(pCASL), and susceptibility-weighted imaging.

The pCASL protocol was as follows: repeti-
tion time = 4590  ms (PLD = 1500  ms), 5285  ms 
(PLD = 2500  ms), labeling duration = 1500  ms, echo 
time = 10.5 ms, field of view = 24 cm, 512 sampling points 
on eight spirals, spatial resolution = 3.64 mm, slice thick-
ness = 4.0 mm, and number of slices = 36, with suppres-
sion of background. Images were acquired within 15 min.

Imaging Post‑processing and Analysis

The ischemic core was measured using a commercially 
available software (NeuBrainCARE, Neurosoft) based on 

Fig. 1  Patient selection flowchart. Flowchart of patient selection and 
exclusion criteria in this study. Others include old, large lesions that 
are greater than 1/3 of the middle cerebral artery territory, multiple 
infarctions involving multiple territories, and death due to cancer
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DWI and apparent diffusion coefficient (ADC) maps as 
regions of ADC < 620 ×  10−6  mm2/s. Occasionally, manual 
delineation was performed when the software output was 
labelled incorrectly.

ASL CBFs were post-processed using the following steps: 
skull stripping, co-registration, and spatial normalization to 
the MNI (Montreal Neurological Institute) space coordi-
nates. The figure of post-processing flow and further details 
are provided in the supplemental material. The hypoperfu-
sion volumes on the 1500 ms and 2500 ms CBF were seg-
mented by seed generation. The volume of collateral perfu-
sion was obtained by segmentation of the residual signal on 
a 2 PLD CBF subtraction map using an in-house developed 
computer-aided software. Segmentation was performed 
using a regional growth method and then corrected by two 
neuroradiologists with > 10 years of experience. Based on 
the signal intensity distributions of the two PLD CBF sub-
traction maps, the seeds of the regional growth method were 
selected as the pixels on the affected side of the brain that 
had a signal intensity higher than the other 95% of pixels on 
the unaffected side of the territory. Additionally, the toler-
ance of the regional growth method was set to 2% of the 
maximum value of the two PLD CBF subtraction map. The 
quantitative CCR was calculated as follows: volume of col-
lateral perfusion/volume of the ischemic core. The workflow 
was completed within 180 s for each case.

Treatment

The best medical therapies, including thrombolysis and con-
servative medical therapy for acute ischemic stroke, were 
provided in accordance with clinical guidelines [11].

Variables

We considered 13 baseline clinical factors, including 
age, sex, initial National Institutes of Health Stroke Scale 
(NIHSS) score, event-to-imaging time, risk factors (hyper-
tension, diabetes, lipid disorders, coronary heart disease, and 
smoking), and baseline imaging parameters, including the 
affected vessel, ischemic core volume on DWI, collateral 
perfusion volume, and CCR. The complete list is presented 
in Table 1.

Outcome Measures

The primary study outcome measure was disability at 
90 days, assessed using the mRS, with scores ranging from 
0 (no symptoms) to 6 (death). Patients were followed up by 
phone call or outpatient consultation to evaluate the mRS 
score and record medication usage by neurologists or neu-
roradiologists who were blinded to the baseline clinical and 
imaging information. A favorable functional outcome was 

Table 1  Patient demographics 
and comparison of patients 
with favorable and unfavorable 
clinical outcome

NIHSS, National Institutes of Health Stroke Scale; MCA, middle cerebral artery; ICA, internal carotid 
artery

Features Total mRS > 2 mRS ≤ 2 P

Patients, n 129 53 76
Age, years 64.05 ± 12.01 64.55 ± 11.52 63.71 ± 12.40 0.70
Sex 0.43

  Male, n (%) 83 32 (60.4) 51 (67.1)
  Female, n (%) 46 21 (39.6) 25 (32.9)

NIHSS, median (IQR) 8 (4–11) 10 (6–14) 4 (2.5–9)  < 0.001
Time from symptom onset to MRI 11.11 ± 7.82 10.92 ± 7.31 11.24 ± 8.19 0.82
Risk factors

  Hypertension, n (%) 83 34 (64.2) 49 (64.5) 0.97
  Lipid disorders, n (%) 36 11 (20.8) 25 (32.9) 0.13
  Diabetes, n (%) 42 17 (32.1) 25 (32.9) 0.92
  Coronary heart disease, n (%) 25 7 (13.2) 18 (23.7) 0.14
  Smoking, n (%) 54 25 (47.2) 29 (38.2) 0.31

Vessel affected 0.28
  MCA, n (%) 101 39 (73.6) 62 (81.6)
  ICA, n (%) 28 14 (26.4) 14 (18.4)

Imaging parameters
  Ischemic core volume, mL 33.08 ± 48.05 58.02 ± 60.01 15.69 ± 26.40  < 0.001
  Collateral perfusion volume, mL 42.12 ± 40.39 29.24 ± 39.13 51.11 ± 39.03  < 0.001
  Collateral-core ratio 2.07 (0.44–8.82) 0.43 (0.18–1.168) 4.61 (1.76–13.43)  < 0.001
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defined as mRS score 0–2; unfavorable functional outcome 
was defined as mRS score > 2.

Machine Learning Algorithms

To predict clinical outcomes using patient characteristics, 
the extreme gradient boosting (XGBoost) ML algorithm was 
trained for model construction [12]. XGBoost is a state-of-
the-art ML algorithm under the gradient boosting frame-
work. It provides parallel tree boosting for solving nonlin-
ear classification problems in a highly efficient and accurate 
manner.

We used Shapley additive explanations (SHAP) to eval-
uate variable importance and interpret model predictions 
[13]. The SHAP is a powerful tool for explaining many 
types of ML. The magnitude of the SHAP values represents 
the contribution of the variable to prediction performance. 
A positive SHAP value indicates that the corresponding 
feature contributes to increasing the probability of the out-
come, whereas a negative SHAP value suggests that the 
corresponding feature leads to a lower probability of the 
outcome [14].

A tenfold cross-validation policy was applied for model 
development and evaluation.

Statistical Analysis

Baseline characteristics were described and compared 
between the patients with favorable and unfavorable out-
comes. Univariate comparisons were made using Pearson’s 
χ2 or Fisher’s exact test for categorical variables and Stu-
dent’s t-test or Wilcoxon rank sum test for continuous vari-
ables, where appropriate.

Partial dependency plots suggest adjusted variable 
dependencies after integrating the effects of all other vari-
ables. The performance of the model was presented using 
Harrell’s concordance index (C index), and the mean C 
index was compared using the Z-test in cross-validation. The 
net reclassification index (NRI) for measuring the model 
improvement in category discrimination was calculated to 
evaluate the model improvement of predictive ability by 
recruiting the CCR versus the traditional model. A higher 
NRI indicated better improvement. The CCR cutoff was 
identified in the receiver operating characteristic (ROC) 
curve by maximizing Yuden’s J to discriminate patients with 
and without unfavorable outcomes. Based on the optimal 
CCR cutoff, the patients were stratified into high and low 
CCR groups. The XGBoost, Sklearn, and SHAP packages in 
Python were used in the analyses and plots. NRI was calcu-
lated using the “nricens” package in RStudio (Version 4.2.0) 
with a threshold of P < 0.05. All P values were two-sided, 
and statistical significance was set at P < 0.05.

Results

Patient Recruitment

Overall, 129 patients (83 men and 46 women; mean age, 
64.05 ± 12.01 years) were included in the final analysis. 
Patients had a median NIHSS score of 8 (interquartile range 
(IQR) 4–11) and a mean time from symptom onset to MRI 
of 11.11 ± 7.82 h.

There were 101 cases of MCA occlusion involving the 
M1-M3 segments and 28 cases of ICA occlusion. The mean 
collateral perfusion volume was 42.12 ± 40.39 mL. The 
mean ischemic core volume was 33.08 ± 48.05 mL. The 
median CCR was 2.07 (IQR 0.44–8.82). The data distribu-
tion of the collateral perfusion volume, ischemic core vol-
ume, and their correlation are presented in Fig. 2A. The 
correlation matrix for all the continuous variables is shown 
in Fig. 2B. A total of 53 patients developed unfavorable 
clinical outcomes (90-day mRS score > 2), and 76 patients 
developed favorable clinical outcomes (90-day mRS score 
0–2). The rate of unfavorable outcomes at 3 months was 
41.1% (53/129) (Table 1).

Variable Importance in the ML Model

All the clinical and imaging parameters were entered into 
the XGBoost prediction model. The feature importance 
of all variables in the model was obtained in the form of 
SHAP values. Among them, CCR showed the highest feature 
importance, followed by NIHSS score (Fig. 3A, B). As the 
main objective was to investigate the incremental prognostic 
hierarchy of CCR, the top six important features, including 
CCR, ischemic core volume, collateral perfusion volume, 
and three clinical variables, were selected to train the model.

The associations between the top six important features 
(ranking from number 1 to 6: CCR, NIHSS, event-to-imag-
ing time, age, collateral perfusion volume, and ischemic core 
volume) and the estimated probabilities of unfavorable out-
comes at 3 months are presented by partial dependency plots 
in Fig. 3C. The estimated probability of unfavorable out-
comes increased with increasing age, NIHSS score, event-
to-imaging time, and ischemic core volume and a decrease 
in the collateral perfusion volume and CCR. A nonlinear 
association was observed between CCR and the probability 
of unfavorable outcomes.

Incremental Predictive Value of the CCR 

After the XGBoost model was trained, tenfold cross-vali-
dation was performed to evaluate the model performance. 
The predictive model incorporating clinical factors, DWI 
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ischemic core volume, collateral perfusion volume, and 
CCR showed better discriminatory power in predicting 
unfavorable outcomes than did the prediction model incor-
porating clinical factors, DWI ischemic core volume, and 
collateral perfusion volume (mean C index 0.853 ± 0.108 
vs 0.793 ± 0.133, P = 0.70; NRI 0.527 ± 0.327, P < 0.05), as 
well as model including clinical factors and DWI ischemic 
core volume (mean C index 0.853 ± 0.108 vs 0.763 ± 0.114, 
P = 0.55; NRI 0.565 ± 0.321, P < 0.05) (Table 2).

Impact of CCR on Clinical Outcome

According to the ROC, the optimal CCR threshold was 0.73, 
with a sensitivity of 69.8%, specificity of 86.8%, and area 
under the curve of 0.832 for the prediction of 90-day mRS 
score > 2 (ROC curve is provided in Supplemental mate-
rial). Forty-seven (36.4%) patients were classified as having 
a low CCR (≤ 0.73), and 82 (63.6%) patients had a high 
CCR (> 0.73).

A comparison of the clinical outcomes between the low 
and high CCR groups is listed in Table  3. Unfavorable 
outcomes were significantly more frequently observed in 
patients with low CCR than in those with high CCR (79.3% 
vs. 23.4%, P < 0.001). The 90-day mRS score distribution 
was significantly better in patients with high CCR than in 
those with low CCR (Fig. 4). One representative case is 
shown in Fig. 5 demonstrating an association between high 

CCR and favorable clinical outcomes. Additional case is 
shown in Supplemental material.

Discussion

In the present study, by taking advantage of the quantitative 
measurement of collateral perfusion, the magnitude of the 
interaction effect between collateral flow and ischemic core 
was quantitatively analyzed. The proposed imaging marker, 
CCR, was the most important predictor of clinical outcomes. 
The accuracy of the prediction model incorporating clinical 
and imaging variables showed marked improvement after 
CCR recruitment.

Collateral circulation and ischemic core are critical 
pathophysiological parameters that determine neurological 
status [15, 16]. Although a linear correlation between the 
collateral circulation and ischemic core was presented [17], 
approximately 30% of patients with large infarct volumes 
had good collateral circulation and developed good clinical 
outcomes [18]. In contrast, approximately 15.4% of patients 
with small infarct volumes had poor collateral circulation 
and developed poor clinical outcomes [19, 20]. In addition, 
contrasting results regarding the association between col-
lateral circulation and outcomes have been reported [21]. 
These findings suggest that the predictive power would be 
weakened by using collateral circulation or ischemic core 

Fig. 2  Correlation analysis of variables. Scatter plot for all enrolled 
patients based on their collateral perfusion and infarct core volumes. 
Collateral perfusion volume showed a significant weak linear correla-

tion with the infarct core volume (A). Correlation matrix for all con-
tinuous variables (B)
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volume alone, and the interaction effect between them may 
be highlighted.

Few studies have directly assessed the interaction between 
collateral circulation and infarct volume in acute large vessel 
occlusive stroke. In our study, the added value of CCR in 
predicting stroke outcomes, as identified by ML, demon-
strated that the interaction information was valuable in the 
construction of the prediction model.

Our method defines the volume of collateral flow by the 
volume of tissue with a time-based arterial spin-labeled 
signal arrival beyond a threshold based on contralateral 
brain CBF. In essence, there is a methodology overlap with 
standard exogenous contrast analyses: penumbral tissue and 
hypoperfusion intensity ratio, typically defined by delayed 
contrast arrival metrics such as Tmax [6]. However, the 
CCR is conceptually different since the CCR investigates 

Fig. 3  Importance of variables and partial dependency plots. Left: 
Importance scores for variables included in the machine learning 
model to predict an unfavorable outcome as assessed by the Shapley 
additive explanations (SHAP) value. Variables with a higher SHAP 
value will have a greater impact on model performance. Right: 
Impact of individual variable on the model’s prediction. A positive 
SHAP value indicates that the corresponding feature contributes to 
an increase in the probability of an unfavorable outcome, whereas a 
negative SHAP value indicates that the corresponding feature leads 

to a lower probability of an unfavorable outcome. Taking collateral-
core ratio as an example, the lower the collateral-core ratio is, the 
greater the risk of an unfavorable outcome. The width of each varia-
ble reflects the frequency of case points (A). Partial dependency plots 
show the effect of the top six important features on clinical outcomes. 
While the middle thick line indicates the average effect of the selected 
variable, the thin lines indicate the effect of each case. The nonlinear 
association between the selected variables and stroke outcomes after 
adjustment of all other variables is illustrated (B)
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the interaction effect between collaterals and ischemic core 
rather than penumbral tissue, and the hypoperfusion inten-
sity ratio is presented to define the status of collateral cir-
culation [22]. Nevertheless, CCR may also be viewed for 
hypothesis generation and transplanted to multimodal CT 
because most centers use CT angiography and CT perfusion 
for acute stroke imaging.

Pial collateral status, which can be assessed by conven-
tional angiography, single-phase or multiphase CT angiog-
raphy [23], and perfusion imaging [24], commonly present 
as semi-quantitative grading scales. Dual-PLD ASL col-
lateral assessment is a quantitative method that has been 
reported in a series of studies from different groups [7, 25, 
26]. The measurement of collateral perfusion on subtraction 
images was conducted by manual segmentation previously; 
in the present study, we developed an in-house software to 
perform skull stripping, spatial co-registration, normaliza-
tion, and automatic segmentation, which greatly reduced 

noise-generation and improved the reliability of collateral 
perfusion measurement.

Because the imaging parameters are correlated with each 
other, feature collinearity might reduce the performance of 
linear models, such as logistic regression, while having lit-
tle impact on the XGBoost model, which characterizes tree 
boosting. In addition, partial dependency plots showed a 
nonlinear relationship between many features and clinical 
outcomes; so the XGBoost ML algorithm rather than linear 
models was preferable in our study.

Our study has several clinical implications. First, the 
study demonstrated an interaction effect between collateral 
circulation and infarct volume on stroke outcomes and pro-
vided a cutoff value for interpreting the quantitative rela-
tionship in determining clinical outcomes in patients with 
acute large vessel stroke. Second, the marker was applica-
ble to a more generalized population. In essence, although 
the time window and patient inclusion criteria have been 

Table 2  Performances and 
comparisons of the prediction 
models

Model 1: Clinical parameters (National Institutes of Health Stroke Scale, event-to-imaging time and 
age) + ischemic core volume
Model 2: Clinical parameters + ischemic core volume + collateral perfusion volume
Model 3: Clinical parameters + ischemic core volume + collateral perfusion volume + collateral-core ratio
The performance of each prediction model based on XGBoost is assessed by the tenfold cross-validation. 
XGBoost, extreme gradient boosting; SD, standard deviation

XGBoost model Mean C index (SD) P value Mean NRI (SD) P value

Model 3 vs model 1 0.853 (0.108) vs 0.763 (0.114) 0.55 0.565 (0.321)  < 0.05
Model 3 vs model 2 0.853 (0.108) vs 0.793 (0.133) 0.70 0.527 (0.327)  < 0.05

Table 3  Comparison of clinical 
outcomes in the low and high 
collateral-core ratio groups

Factor High collateral-core 
ratio

Low collateral-core 
ratio

P

N 82 47
Favorable outcomes (mRS score 0–2), n (%) 65 (79.3) 11 (23.4)  < 0.001
Excellent outcomes (mRS score 0–1), n (%) 46 (56.1) 5 (10.6)  < 0.001
Moderate outcomes (mRS score 0–3), n (%) 76 (92.7) 24 (51.1)  < 0.001

Fig. 4  Influence of collateral-
core ratio on clinical outcomes. 
The comparison of the 90-day 
modified Rankin scale score 
distribution, which is sig-
nificantly shifted to better func-
tional independence in the high 
collateral-core ratio group
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extended, only a small proportion of stroke patients can 
receive endovascular treatment (representing only 3.1% of 
patients in 2016 all over the USA) for many subjective rea-
sons, including capacity of stroke centers, physician skill, 
and related resources [27]. Since penumbral imaging has 
been the standard assessment of patients considering endo-
vascular treatment, imaging markers for treatment response 
in those considering the best medical treatment have not yet 
been developed. The proposed CCR provides an alternative 
biomarker for clinical outcome prediction and may help to 
support treatment. Third, ASL requires no contrast admin-
istration, which is applicable for elderly individuals or those 
with kidney disease and reduces the contrast burden during 
the entire course of diagnosis and treatment [28]. The post-
processing flow is fast and requires no complicated steps, 
which means that the method is suitable for rapid assessment 
of patients prior to decisions.

This study had some limitations. First, the arrival of 
collateral flow may be further delayed due to large vessel 
occlusion, leading to the underestimation of collateral per-
fusion by the dual-PLD ASL method. The measured col-
lateral perfusion may only be a part of the total collateral 
flow or the early arriving part of the collateral flow. How-
ever, this early arriving part of the collateral flow may be 
more important and in accordance with the rapid collateral 
flow, as assessed by digital subtraction angiography or CT 

angiography, serving as a highly efficient compensated flow 
to the ischemic territory. Second, the relatively long scan-
ning time of the study protocol and some technical concerns, 
for example, the different implementations of ASL (pulsed 
ASL versus pCASL) and signal loss with lower field strength 
scanners (making 3 T a minimum technical requirement), 
should be considered during clinical practice. Third, the 
small size of the cohort imposed limitations on the accuracy 
of the ML model and statistical modeling in general. And, 
these results only pertain to acute stroke patients with mod-
erate or mild stroke who had an occlusion visible on vascular 
imaging and received the best medical therapy.

Conclusions

CCR as the top predictor of functional independence at 
90 days was identified by ML in patients with stroke due 
to acute anterior large vessel occlusion. This new imaging 
marker provides a quantitative assessment of the magnitude 
of the physiological interaction effect between the collateral 
circulation and ischemic core size. The prediction model that 
included CCR, along with clinical and imaging parameters, 
showed remarkably improved predictive performance. Fur-
ther studies employing standard exogenous contrast methods 
are required to validate these findings.

Fig. 5  Representative case exhibiting a high collateral-core ratio and 
a better clinical outcome. Figure shows a 40-year-old male patient 
with acute left distal internal carotid and middle cerebral artery 
occlusion. Diffusion-weighted imaging (DWI) demonstrates a basal 
ganglia region infarction with a volume of 12.65  mL (A). Territo-
rial hypoperfusion can be observed on cerebral blood flow maps on 

arterial spin labeling with a post-labeling delay (PLD) of 1500  ms 
(B). Delayed inflow in the territory is visible on cerebral blood flow 
maps from PLD of 1500 ms to 2500 ms (C). The volume of collat-
eral perfusion as overlaid green mask on DWI is 45.74 mL (D). The 
collateral-core ratio is measured as 3.62. The patient achieved a good 
functional outcome (3-month mRS score is 1)
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