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Abstract. Hyperpolarized 129 Xe lung magnetic resonance imaging 
(MRI) offers a method for visualizing human lung function. However, 
its long imaging time limits widespread research and clinical adoption. 
Deep learning has shown significant potential in addressing undersam-
pled MRI reconstruction challenges. Yet, the clinical novelty of hyper-
polarized 129 Xe lung MRI results in a particular lack of raw k-space 
data. To address this, we propose a Noise-Controllable Complex-Valued 
Diffusion Model (NC-CDM) to augment the available data from limited 
clinical training set. Specifically, complex-valued convolutional kernels 
replace traditional ones, enhancing feature extraction and data utiliza-
tion efficiency by learning rich representations from k-space. In addition, 
a noise-controllable module is introduced to mitigate estimation biases 
caused by thermal noise during MRI acquisition in t he training phases.
Experiments compare the proposed NC-CDM with other state-of-the-art
models. Fréchet Inception Distance (FID) and Inception Score (IS) met-
rics show that our method obtains higher image quality. The generated
data, mixed with real data, are subsequently applied to downstream MRI
reconstruction task using two deep learning-based MRI reconstruction
methods: CasNet and KIKI-net. The results show that reconstruction
networks trained on our generated data exhibit superior reconstruction
performance.

Keywords: Hyperpolarized 129 Xe MRI · k-Space Data G eneration ·
Diffusion Model

1 Introduction 

Hyperpolarized 129Xe lung MRI provides a non-invasive and non-ionizing 
method for evaluating pulmonary function, showing potential for early detection
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Fig. 1. The framework of our work comprises two steps: (a) Using the proposed Noise-
Controllable Complex-Valued Diffusion Model (NC-CDM) to generate MRI k-space 
data. These data are then mixed with real data to create the training set for down-
stream reconstruction task. (b) The reconstruction task is used as a downstream task
to validate the effectiveness of the generation methods.

and treatment of lung diseases [1]. However, due to the decay of hyperpolarized 
129Xe magnetization, faster image acquisition is necessary for practical clinical
application [2, 3]. The integration of deep learning techniques has proven highly 
successful in enhancing the process of MRI reconstruction [4, 5]. Nevertheless, 
its use in medical imaging is limited by the scarcity of data [6]. This limita-
tion is particularly significant in the emerging field of hyperpolarized 129Xe lung 
MRI, where raw k-space data for reconstruction research is lacking [7]. Recent 
advancements in denoising diffusion probabilistic models (DDPM) have shown 
remarkable success in data synthesis tasks [8– 15]. Specifically, DDPM have been 
utilized to address data scarcity in diagnostic tasks by reliably generating images
with specific data structures [9] and pathological features [10], offering a novel 
solution for data augmentation. However, current generative studies mainly focus 
on generating spatial domain data, with limited research on frequency domain
k-space data generation [7]. Additionally, existing studies have predominantly 
used a training set with high signal-to-noise ratios, overlo oking the impact of
noise on the generated samples [16, 17]. 

To alleviate the problem of data dependence in undersampled hyperpolar-
ized 129Xe lung MRI reconstruction, this study introduces a Noise-Controllable 
Complex-Valued diffusion model (NC-CDM). This model is s pecifically designed
to synthesize k-space data, incorporating crucial phase information in the pro-
cess, as illustrated in Fig. 1(a). Unlike conventional DDPM [18], our approach 
utilizes complex-valued convolution kernels [19] to better capture complex-
valued space information, thereby improving feature extraction and utilization 
of complex-valued data. Furthermore, Gaussian noise is present in the measured
k-space due to thermal fluctuations stemming from hardware and background
factors [16]. The presence of thermal noise in measurements introduces devia-
tions in the noise estimation during the reverse process of the diffusion model. 
These deviations become particularly pronounced as the process approaches the 
noise-free data distribution. Consequently, when MRI measurements are affected
by thermal noise, the DDPM-based data generation methods may produce poor-
quality results or even fail [7, 16]. To mitigate this issue, we have developed a 
noise-controllable module to adjust the predicted noise of the diffusion model 
during training and facilitate noise controlled data generation during the sam-
pling phase. To validate the effectiveness of the generated data in the downstream
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task, we employed a mixed dataset (consisting of both real and generated data) 
to improve the performance of undersampled hyperpolarized 129Xe lung MRI
reconstruction, as depicted in Fig. 1(b). Our contribution a re three-fold:

– To the best of our knowledge, this is the first time numerous virtual k-space 
data have been directly synthesized using a diffusion model for the purp ose of
training a follow-up model for undersampled hyperpolarized 129Xe lung MRI
reconstruction.

– The proposed NC-CDM employs complex-valued convolutions for effective 
feature extraction and includes a noise-con trollable module to mitigate ther-
mal noise.

– Integration of the data generated by the NC-CDM into the training set results 
in an improvement in the accuracy of reconstruction task on the test set. This
demonstrates the efficacy of generated data in downstream task.

2 Method 

2.1 Overview of the Prop osed Method

The single-coil k-space data, x from hyperpolarized 129Xe lung MRI data, is 
always corrupted by thermal noise η ∼  N (

μ, σ2
)
,  where  x, μ, σ ∈ C.  Let  x0 ∈ C 

be the clean k-space data, then x = x0 + η. Fluctuations in noise levels affect the 
predetermined noise for training a diffusion model, leading to decreased perfor-
mance. To address this issue and enhance the quality of generated k-space data, 
we propose the Noise-Controllable Complex-Valued Diffusion Model (NC-CDM), 
which is based on a standard UNet architecture within the DDPM. The data is
first preprocessed to deal with the thermal noise. Then, traditional convolution is
replaced with the complex-valued convolution, and a noise-controllable module
is incorporated to address the predicted noise in the diffusion model.

Data Preprocess. To mitigate the impact of thermal noise in the subsequent 
calculations of NC-CDM, the μ is eliminated f rom x during preprocessing, as
shown in Fig. 2(b). The x is first subjected to inverse Fourier transformation f ′

to the image domain y = f ′(x), followed by the calculation image domain noise 
from the background in the four image corners. Subsequently, the image domain 
noise is transformed back into k-space noise η = ηR + jηI , where the real noise is 
ηR ∼  N (μR,  σ2 

R) and imaginary noise is ηI ∼  N (μI ,  σ2 
I ), respectively. To finalize 

preprocessing, we subtract the m ean noise (μR for real, μI for imaginary) from
the corresponding parts of the image. The processed data, x′

0, serves as NC-CDM
input at t = 0, where x′

0 = x − μ = x0 + η′, η′ ∼ N (0, σ2).

Noise Predictor of Complex-Valued Diffusion Model. Figure 2(c) 
presents the noise prediction framework of the NC-CDM at step t. In the NC-
CDM, the input is the k-space data. Through the optimization of the loss func-
tion (Eq. (3)), the output of the NC-CDM is the predicted noise at step t. After
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Fig. 2. Detail of proposed Noise-Controllable Complex-Valued Diffusion Model (NC-
CDM). (a) Flowchart of proposed NC-CDM: NC-CDM generates k-space data through 
diffusion forward and reverse processes. (b) Data preprocess: Performing inverse Fourier 
transformation on x to obtain y, estimating background noise from the real and imagi-
nary parts of y in all four corners, employing Fourier transform to get η on k-space and
subtracting μ from x. (c) Noise predictor of NC-CDM: Utilizing complex-valued con-
volution and correcting for the estimated noise at time step t. xt is the complex-valued
input at step t.

T steps, by sampling from the noise assigned by the output of the network, 
we can derive the generated data. In the NC-CDM, the complex-valued denoise 
network utilizes a UNet-based model. It consists of three modules, including 
encoder, decoder, and skip connection. In our complex-valued diffusion model, 
all convolutions are carried out through complex-valued o perations to extract
detailed feature representations in a complex-valued space. The complex-valued
convolution can be formulated as:

[
Re (W⊗c)
Im (W⊗c)

]
=

[
X −Y
Y X

] [
a
b

]
(1) 

where Re() and Im() represent the real and imaginary data, respectively. a is 
the real part, and b is the imaginary part. The convolution kernel denotes as 
W = X + jY ,  where  X represents the real convolution, and Y represents the
imaginary convolution. ⊗ is the convolutional operator.

Noise-Controllable Module. The noise of hyperpolarized 129Xe in lung 
MRI is high. This thermal noise infiltrates the diffusion model-based gener-
ation process via the data consistency term, disrupting the predefined noise 
schedule used for training the reverse process. For example, at time step t, 
xt = 

√
αtx0 + 

√
1 − ᾱtε̄t with clean input x0 and DDPM parameter α, due

to the influence of intrinsic thermal noise η′, the forward process from x′
0 to xt

is rewritten as:
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xt = 
√

αtxt−1 + 
√
1 − αtεt 

= 
√

αtx0 + 
√
1 − ᾱtε̄t + 

√
ᾱtη

′,  η  ′ ∼ N (0, σ2)
(2) 

The difference between them is 
√

ᾱtη
′. Furthermore, this difference will 

increase as t decreases. Consequently, diffusion model-based generation meth-
ods may experience sub-optimal performance or even failure when the thermal 
noise of MRI is not negligible. To address this issue, we propose an explicit noise 
control module during the diffusion process. This module introduces a λt into 
the reverse process to correct errors from the training stage. In simple terms, we 
use λ t to attenuate the predicted noise, and the loss function is rewritten as:

Lt−1 = Ex0,ε∼N (0,I)

[
‖ε − λtεθ (xt, t)‖2

]
, λt =

√
1 − ᾱ√

1 − αt +
√

αtσ
(3) 

The backward process can be written as follows: 

xt−1 = 
1√
αt

(
xt − 1 − αt√

1 − ᾱt 
εθ (xt,  t)  +

√
αtηg

)
, ηg ∼ N (

0, σ2
g

)
(4) 

xg = x0 + μg (5) 

where xg is the generated image, μg and σg are the mean and variance that
control the generated image.

2.2 Evaluation 

The Fréchet Inception Distance (FID) [20] and Inception Score (IS) [21]  are  com-
monly used to assess the visual quality of generative models. However, these met-
rics can unfairly penalize non-GAN models, and IS may yield overly optimistic 
results for methods with sampling mo difications. To comprehensively evaluate
the impact of synthetic samples on downstream task, we trained CasNet [4] 
and KIKI-Net [5] on a training set comprising a mixture of real and generated 
images. CasNet is a network specifically designed for reconstructing hyperpo-
larized 129Xe lung MRI, while KIKI-Net is a general network for reconstructing 
magnetic resonance images. The networks were trained for image reconstruction 
with acceleration factors (AF) of 4 and 6, and their performance was evaluated
on a test set of real images using Peak Signal-to-Noise Ratio (PSNR) and Struc-
tural Similarity (SSIM). Our method was extensively compared with StyleGAN
[22], VAE [23], DDPM [18], and DDIM [24] in terms of image generation simi-
larity and reconstruction accuracy against real images. The NC-CDM involves 
generating in the k-space domain, as opposed to directly generating time-domain 
images as seen in other approaches. The NC-CDM demonstrates higher reliabil-
ity and wider acceptance compared to recently proposed networks.
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2.3 Implementation D etails

The model is trained using a batch size of 16, with input images resized to 
96 × 96. The SGD optimizer is employed with an initial learning rate of 0.0001 
for training over 3000 epochs. For the training of CasNet and KIKI-net, we 
utilize the SGD optimizer with an initial learning rate of 0.001 for 200 epochs.
The source code is available at https://github.com/TmpAccount25/NC_CDM. 

3 Experiments 

Dataset. In the study, a total of 94 subjects (including healthy subjects and 
patients) were enrolled, all providing informed consent. Pulmonary 129Xe imag-
ing parameters included a 3D bSSFP sequence with a matrix size of 96 × 84 and 
24 slices. To address the impact of edge information, only the 16 middle slices 
from each subject were selected for model training and validation. The dataset 
was divided by subjects, with 75 patients randomly selected as the training set 
and the remaining 1 9 patients as the test set. The generation model was trained
on the training set and evaluated on the test set. Subsequently, the models for
downstream reconstruction task was trained by mixing the generated data with
samples from the training set, and then tested on the test set.

Comparisons with State-of-the-Art Methods. A comparison with state-of-
the-art methods is presented in Table 1. Mixing images generated by StyleGAN 
and VAE with real images did not improve the reconstruction accuracy com-
pared to the baseline (Real Image), due to poor reconstruction quality and sig-
nificant distribution mismatch with real images. The StyleGAN model exhibited 
the most significant decline in performance when accelerated by a factor of six,
with a decrease of 2.35 in PSNR and 0.1030 in SSIM, while VAE’s performance

Table 1. Quantitative evaluation was conducted on the test set. The first line presents 
the reconstruction results using only real images as the training set, serving as the
baseline. The highest scores are highlighted in bold.

Method FID IS Down-stream task ( MR Reconstruction)
CasNet KIKINet 
×4 ×6 ×4 ×6 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 
Real Image — — 29.71 0.8561 24.05 0.6222 31.8 0.8452 26.48 0.7821 
StyleGAN 204.55 1.112 28.89 0.8481 23.61 0.6125 30.29 0.8722 24.13 0.6791 
VAE 189.82 1.320 29.32 0.8699 23.72 0.6013 30.73 0.8791 25.72 0.7195 
DDPM 160.74 2.091 31.31 0.8724 25.14 0.7094 32.31 0.8940 26.48 0.7871 
DDIM 163.70 2.101 30.87 0.8764 25.61 0.7143 32.10 0.8900 26.56 0.7644 
Ours 110.12 2.411 33.52 0.9078 27.33 0.8515 34.21 0.9205 30.79 0.8711

https://github.com/TmpAccount25/NC_CDM
https://github.com/TmpAccount25/NC_CDM
https://github.com/TmpAccount25/NC_CDM
https://github.com/TmpAccount25/NC_CDM
https://github.com/TmpAccount25/NC_CDM
https://github.com/TmpAccount25/NC_CDM
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Fig. 3. Visual result of the generated data. To better illustrate the quality of the 
generated images, we present the generated k-space data, which has been transformed 
in to the image domain using inverse Fourier transformation. The final row represents
the real data.

decrease was less pronounced. In contrast, DDPM and DDIM showed minor 
improvements in accuracy under an AF of 4 in CasNet. Specifically, DDPM and 
DDIM demonstrated increases of 1.6 and 1.16 in PSNR, and 0.0163 and 0.0203 
in SSIM, respectively. When an AF of 6 was applied, DDPM and DDIM achieved 
increases of 1.09 and 1.56 in PSNR, respectively, and improvements of 0.0872 
and 0.0921 in SSIM, respectively. However, under the AF of 6, there was no 
significant improvement in performance for DDPM and DDIM. Our proposed 
method outperformed other approaches, achieving an FID score of 110.12 and an 
IS score of 2.411, which suggests a closer match between the generated samples 
and real sample distribution. Furthermore, our method excelled in the recon-
struction task, showing improvements in PSNR by 3.81 and 3.28, and in SSIM
by 0.0517 and 0.2293 under the AF of 4 and 6 in CasNet, respectively. Similarly,
in KIKI-net under the AF of 4, PSNR improved by 2.41 and 4.31, and SSIM
by 7.53 and 8.9 under the AF of 6. These results demonstrate the enhanced
adaptability of proposed method to downstream task, addressing the challenge
of limited samples. The visual results of images generated using different models
are shown in Fig. 3. To visually showcase the quality of the generated images, we 
display the k-space data converted into the image-domain using inverse Fourier 
transformation. Our method pro duces samples that closely resemble real samples
in terms of image contrast and structural details.

Ablation Study: To evaluate the efficacy of the proposed complex-value net-
work with a noise-controllable module in enhancing data quality g eneration, sev-
eral ablation experiments were conducted. Table 2 shows all the results of these 
ablation studies. The initial row represents the baseline DDPM, which is the DM 
network without complex-valued convolutions and noise-controllable module.
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Table 2. Quantitative evaluation across different modules. The highest scores are 
highlighted in bold.

Method FID IS Down-stream task ( MR Reconstruction)
CasNet KIKINet 
×4 ×6 ×4 ×6 

Complex NC PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 
✗ ✗ 160.74 2.091 31.31 0.8724 25.14 0.7094 32.31 0.8940 26.48 0.7871
� ✗ 157.81 2.196 32.21 0.8941 26.21 0.7909 32.98 0.9033 27.70 0.7821
� � 110.12 2.411 33.52 0.9078 27.33 0.8515 34.21 0.9205 30.79 0.8711 

Fig. 4. Ablation of the number of generated images by proposed Noise-Controllable 
Complex-Valued Diffusion Model (NC-CDM).

Firstly, replacing traditional convolutions with complex-valued convolutions led 
to enhancements in all metrics compared to the baseline network, showcasing 
the capability of complex-valued convolutions in extracting intricate informa-
tion beyond temporal features. Moreover, the incorporation of the noise control 
module notably boosted the accuracy of all metrics, with FID of 110.12 and IS 
of 2.411. When employing CasNet with the AF of 4 and 6, SSIM improved from 
0.8941 to 0.9078 and from 0.7909 to 0.8515, respectively. Furthermore, when 
utilizing KIKI-net with the AF of 4 and 6, SSIM improved s ignificantly, from
0.9033 to 0.9205, and from 0.7821 to 0.8711, respectively. The reconstruction
accuracy under different acceleration factors also reached its peak. This under-
scores the module’s effectiveness in generating low signal-to-noise ratio images.
To verify the influence on number of generated image on the downstream task,
Fig. 4 demonstrates the correlation between the quantity of artificially gener-
ated data integrated into the raw data and the reconstruction accuracy. With 
an increase in the number of generated images, CasNet and KIKI-net attain 
PSNR values of 33.52 and 34.21 for the reconstruction task with an AF of 4,
and 27.33 and 30.79 for the reconstruction task with an AF of 6.
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4 Conclusion 

In conclusion, this study introduces an innovative approach to mitigate sample 
scarcity in medical image analysis. Unlike traditional image-domain generation 
methods, we utilize a complex-valued diffusion model to directly synthesize k-
space data for hyperpolarized 129Xe lung MRI. To mitigate the effects of thermal 
noise in MRI with low signal-to-noise ratios, a noise-controllable module is inte-
grated, which reduces noise impact during the forward process and enhancing 
the alignment of generated samples with real data distributions in contrast and 
tissue detail. We evaluate the proposed method’s efficacy by comparing it with 
state-of-the-art techniques using FID and IS metrics and assessing its impact on 
downstream task through validation reconstructions in acceleration factors of 
4 and 6 with CasNet and KIKI-Net, respectively. Experimental results demon-
strate the superior performance of our approach, highlighting its potential for 
downstream applications and advancing image synthesis techniques. Although 
the hyperpolarized 129Xe lung MRI data we used were collected using a single 
coil, the proposed method is not limited to the MRI acquisition method and is 
applicable to the acquisition of multicoil and single coil MRI.
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