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Abstract

Background:Segmentation of cardiac structures is essential for cardiac func-
tion evaluation using cine magnetic resonance imaging (MRI). Deep learning
can be used to segment cardiac structures in cine cardiac MRI with high
accuracy, but this approach requires fully annotated datasets for training,
which are difficult to obtain. Semi-supervised segmentation methods provide
a way to alleviate the burden of manual labeling by using labeled and unla-
beled data for training. However, these methods generally provide suboptimal
segmentation accuracies.

Purpose:To develop a semi-supervised method that utilizes relatively small
training datasets and under-annotations for improved cine cardiac MRI seg-
mentation.

Methods:The proposed approach consists of deformable registration, fully and
weakly supervised segmentation, and a temporal attention perceiver (TAP). The
registration module was trained to warp labeled frames to generate pseudo
labels for unlabeled frames. The warped labeled images were used to train
the fully supervised segmentation network. The unlabeled images and the
pseudo label were used to train the weakly supervised segmentation model,
and the segmentation prediction was compared with the input pseudo label as
an auxiliary loss to the registration module. The TAP module was employed
to generate optimized features for the warped labeled and the original unla-
beled images both paired with the original labeled image. Consistency between
the resulting features was enforced to refine cross-instance feature alignment
to facilitate the registration. One hundred, twenty, and ten subjects from the
Automatic Cardiac Diagnosis Challenge (ACDC) and seventy-five, thirty, and
fifteen cases from the Multi-Vendor & Multi-Disease (M&Ms) Cardiac Image
Segmentation Challenge were used for training, each with random end-systolic
(ES)/end-diastolic (ED) frames labeled. The optimized models were used to seg-
ment the remaining 50 ACDC and 50 M&Ms subjects. The proposed approach
was compared with several commonly used semi-supervised segmentation
methods in terms of Dice-similarity-coefficients (DSC), average-symmetric-
surface-distance (ASSD), and Hausdorff-distance (HD) for left (LV) and right
(RV) ventricular cavity and myocardium (Myo). A Unet trained on the same
subjects each with both frames labeled was used as an upper bound (Unet_UB).
Results:Using 100 ACDC training subjects, our approach yielded DSC =
0.910+0.063, ASSD = 1.37+0.63 mm, and HD = 6.38+2.99 mm for RV, DSC
=0.894+0.024,ASSD = 1.20+1.12 mm, and HD = 4.67+3.22 mm for Myo, and
DSC = 0.934+0.056, ASSD = 1.25+1.63 mm, and HD = 3.97+5.76 mm for LV.
A bidirectional copy-paste (BCP) method performed the best among the com-
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parative methods and generated DSC = 0.902+0.060, ASSD = 1.45+0.60 mm,
and HD = 7.50+3.20 mm for RV, DSC = 0.885+0.030, ASSD = 1.28+0.80 mm,
and HD = 5.80+2.80 mm for Myo, and DSC = 0.920+0.068, ASSD = 1.15+0.40
mm, and HD = 4.20+3.30 mm for LV. For Unet_UB, these were 0.905+0.068,
1.48+0.61 mm, and 6.35+2.85 mm for RV, 0.895+0.030, 1.05+0.45 mm, and
4.40+3.09 mm for Myo, and 0.941+0.044, 1.02+0.34 mm, and 3.17+1.63 mm
for LV. Similar trends were observed when using 75 M&Ms training subjects.
For all the experiments, our approach outperformed BCP in general and yielded
segmentation accuracies comparable to Unet_UB.

Conclusions:The proposed approach outperformed several commonly used
semi-supervised segmentation methods and yielded segmentation accuracies
on par with fully supervised Unet using various relatively small datasets and
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attention perceiver

1 | INTRODUCTION

Cine cardiac magnetic resonance imaging (MRI) is
a sequence of individual frames that correspond to
different timepoints in a cardiac cycle. Cine MRI is
typically acquired by dividing a cardiac cycle into mul-
tiple frames under electrocardiogram triggering, and
each frame contains information gathered over multi-
ple heartbeats, resulting in a series of frames of the
heart that can be displayed as a movie.! Cine MRI
has been established as the gold standard for eval-
uating cardiac function, including chamber volumes,
ejection fraction, myocardial thickness and mass, and
wall motion dynamics, with high spatial and temporal
resolution and no ionizing radiation.? Segmentation of
cardiac structures is required to generate these cardiac
functional measurements. Although manual segmenta-
tion remains an option, this approach requires significant
expertise, and is labor-intensive, time-consuming, and
user-dependent, incompatible with efficient and high-
throughput clinical workflow. Recently, deep learning
algorithms have demonstrated numerous promise in
cardiac image segmentation when trained with large-
scale and carefully annotated datasets in a fully
supervised manner>=> However, collecting large-scale
cine MRI datasets requires substantial investment of
medical resources, and manual annotation is labor-
intensive, time-consuming, variable, and demands sig-
nificant expertise® Accordingly, there is an urgent need
to develop segmentation algorithms that require rel-
atively small training datasets and fewer annotations
for widespread application of deep learning in clinical
cardiac MRI workflow.

1.1 | Related work

Semi-supervised learning provides a way to allevi-
ate the critical requirements of fully annotated dataset

under annotations for training.

cine cardiac MR, joint registration and segmentation, semi-supervised segmentation, temporal

by utilizing information learned from both labeled
and unlabeled data. In general, semi-supervised seg-
mentation methods may be categorized into three
classes: pseudo labeled-based methods, consistency
regularization-based methods, and atlas-based meth-
ods.

Pseudo label-based methods usually adopt a model,
for example, a pre-trained model, to generate pseudo
label for unlabeled input data, which is used as new
sample alone or mixed with labeled data for further
training.” Thompson et al® proposed to generate super
pixel maps and leverage their features to improve the
accuracy of pseudo label during training. Wang et al®
introduced a network that utilizes a re-weighting method
to evaluate the loss function and select the pseudo
label with high confidence. Shi et al.'® developed a
framework that involves uncertainty estimation based on
subnetwork prediction inconsistency and a self-training
strategy to generate more reliable predictions. Kalluri
et al."" employed pixel-wise entropy regularization to
align deep feature representations across different
domain to generate low entropy pseudo label for unla-
beled data. Chen et al.'> developed a cross pseudo
supervision (CPS) framework that comprises two dif-
ferently initialized segmentation networks. The pseudo
label generated by one network was used to supervise
the other, and bidirectional consistency between the two
networks’ output was enforced. Cui et al.'® estimated
segmentation prediction uncertainty during training to
rectify the pseudo label for unsupervised segmentation.
Sohn et al.'* introduced FixMatch, where the predictions,
with probability above a threshold, of weakly augmented
images were used as supervision for the same input
images undergoing strong augmentation. Yang et al.'®
augmented input images using different strong pertur-
bations, and unified image and feature perturbations in
independent streams, dubbed unified dual-stream per-
turbations approach (UniMatch), to improve FixMatch.'*
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Bai et al.'® randomly cropped the foreground in a
labeled image and copy-pasted the cropped region
onto the corresponding region in an unlabeled image.
The same operation was then reversed, also known as
bidirectional copy—paste (BCP), resulting in augmented
inputs to a student network by mixing the original
labeled and unlabeled images. Pseudo label generated
by a teacher model was similarly mixed with manual
masks and used as supervision for the student net-
work. Song et al.!” extended the BCP architecture'®
by incorporating two student models to learn het-
erogeneous features. Discrepancies between the two
student networks’ outputs were corrected by minimiz-
ing the distances for correct segmentation voxels and
maximizing the entropy for erroneous segmentation
voxels.

Consistency regularization-based algorithms typically
utilize multiple models and encourage the models to
generate invariant predictions for the same input at
different views or under different perturbations. Mean-
teacher methods'®'® optimize a student model by
encouraging consistency between the predictions of a
teacher model and a student model with noise added
to the input. Typically, the teacher model estimates
segmentation uncertainty using Monte Carlo dropout,
filtering out unreliable predictions and allowing the stu-
dent model to focus on reliable cases. Xie et al?°
developed a method that consists of a segmenta-
tion network (S-Net) and a pairwise relation network
(PR-Net) that was trained to exploit the semantic con-
sistency for each pair of images in feature space.
The shared encoders of the two networks exploit the
learned image representation ability of the PR-Net to
improve the performance of the S-Net. Zhang et al?’
employed a deep adversarial networks (DAN) to seg-
ment both labeled and unlabeled data and then used
an evaluation network to differentiate segmentation
quality for labeled and unlabeled images, which was
used to fool the evaluation network and to improve the
segmentation quality. Qiao et al.?’> employed deep co-
training to train multiple neural networks using unlabeled
images in different views and encouraged differences
between networks’ output by minimizing the Jensen—
Shannon divergence between these predictions. Luo
et al?® utilized a pyramid-prediction network to gener-
ate segmentation predictions for unlabeled images at
multiple scales and minimized the differences between
each prediction and their average weighted by multi-
scale uncertainty. Ouali et al.>* developed a network that
consists of an encoder and multiple different decoders
to generate various outputs as pseudo label for cross
supervision with consistency training (CCT). Luo et al?®
introduced an uncertainty rectified pyramid consistency
(URPC) framework that comprises a convolutional neu-
ral network and a transformer, and the predictions from
one network were used to train the other. Ma et al?®
incorporated Mamba as the backbone of a Unet (Mam-

baUnet), and employed pixel-level cross supervision and
contrastive learning to enhance feature learning.

Atlas-based semi-supervised segmentation
methods?’28 typically employ a registration unit to
align labeled images with unlabeled data. The input
labeled images are also used to train a segmentation
model to segment the unlabeled images, which provides
a way to improve the registration through evaluation
of the warped label and the unlabeled image segmen-
tation. Xu et al?’ proposed a DeepAtlas framework
that employs a registration module to warp labeled
images to unlabeled images and a segmentation mod-
ule to generate predictions of unlabeled data. The
segmentation results were then used to supervise the
registration based on the anatomical similarity. Wang
et al?? employed a CNN to learn voxel-wise correspon-
dences between an atlas image and unlabeled images
under a forward-backward consistency constraint.
Elmahdy et al2° developed a 3D adversarial network
for joint registration and segmentation. The generator
estimated and applied deformation field to the moving
image and the segmentation. A discriminator network
was used to evaluate the alignment of the moving
image and the segmentation with the fixed image.
Dinsdale et al3' used an adapted spatial transformer
network to learn the deformation field and resample the
initial mask to create the final segmentation. Learning
better registration to learn better segmentation (BRBS)
involved deforming labeled images into unlabeled data
to generate pseudo label?® Warped label and pseudo
label were then used to train a segmentation model, and
the segmentation predictions of labeled and unlabeled
images were used to facilitate registration by providing
anatomical guidance.

Although effective, existing pseudo-label and con-
sistency regularization-based methods heavily rely on
original manual label as the only source of seman-
tic guidance and are limited by inefficient utilization of
labeled data in general. In atlas-based methods, manual
masks warped using various deformation field gener-
ated by image registration are used as pseudo labels
for unlabeled data, effectively enhancing the diversity
of semantic guidance and enlarging the size of train-
ing samples by treating the numerous intermediate
warped labeled images as augmented samples. How-
ever, registration may result in mismatch between the
pseudo labels and the unlabeled data, which are used
together with the warped labeled images to train a sin-
gle segmentation network, leading to confirmation bias
and potentially impaired segmentation performance for
existing atlas-based methods. In addition, registration
is predominantly performed and constrained in image
space. Although constraints in feature space have been
explored, these methods typically rely on single-image
representation that introduces biases. We think that
exploring inter-image relationships for feature represen-
tation provides a way to reduce encoding biases and
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generate optimized features for robust feature align-
ment and registration constraint. This may result in
improved registration accuracy, which in turn enhances
the segmentation performance. Accordingly, we pro-
posed to address some of these issues and develop
an atlas-based approach based on the DeepAtlas
architecture for improved semi-supervised cine cardiac
MRI segmentation.

1.2 | Contributions
We summarize the novelty and main contributions of our
work as follows:

1. We incorporated two segmentation branches, one for
fully supervised segmentation trained on matched
warped labeled images generated by a registration
module and the other for weakly supervised seg-
mentation trained using the resulting pseudo label
and original unlabeled images. The dual segmen-
tation mechanism promotes effective optimization
of each segmentation network that is designed to
handle different matched and mismatched data and
capture heterogeneous features collaboratively, alle-
viating confirmation bias and leading to improved
segmentation performance.

2. We paired the warped labeled and original unlabeled
images with the original labeled data to generate
two image pairs. We proposed a temporal atten-
tion perceiver (TAP) to extract features from the two
images in an input image pair independently and
modulate the channel-wise weights based on the
relationships between the two feature instances. The
estimated channel-wise weights were used to scale
and aggregate the two features to generate unbiased
feature for the input image pair. Consistency between
the resulting features for the two image pairs was
enforced to further optimize the registration to gen-
erate more reliable pseudo label and spatial prior for
improved segmentation.

3. We comprehensively evaluated the effects the dual
segmentation and TAP modules as well as the
entire algorithm pipeline. For two public cine MRI
datasets, our approach outperformed several state-
of-the-art semi-supervised segmentation methods
and approached fully supervised training when using
relatively small labeled and unlabeled datasets for
training.

2 | METHODS
2.1 | Overview of algorithm pipeline

Our objective is to segment perhaps the most widely
used end-systolic (ES) and end-diastolic (ED) frames

in cine MRI using relatively small datasets with man-
ual annotation at either the ED or ES frame for training.
Figure 1 shows the schematic of the proposed semi-
supervised segmentation framework, which consists of:
1) a registration module that warps the moving labeled
image /,, and the segmentation S, to the fixed unla-
beled image /s, yielding warped moving image /;, and
label S/; 2) a dual segmentation module that performs
fully and weakly supervised segmentation of the warped
labeled (//, and S,) and original unlabeled (I, S},)
images, respectively, and provides semantic knowledge
to facilitate the registration in 1); 3) a temporal attention
perceiver (TAP) that encourages spatial and temporal
consistency between the original image pair (/,,, Ir) and
the warped pair (I, I/,,) in feature space to improve the
registration in 1).

2.2 | Deformable image registration

For each subject, we randomly selected the ED or ES
frame as unlabeled fixed image /s and the other as
labeled moving image /,,. We employed VoxelMorph3?
as the registration network Reg, which was pre-trained
using the training dataset without any label. For each pair
of input images /,, and I, the predicted displacement
field D = Reg(l,,, Ir) was used to generate the deforma-
tion field ¢ by incorporating identify transform /d, that is,
¢ = D + Id. The resulting deformation field ¢ was used
to warp the moving image /,,, and its manual label S,
to match /;. The warped moving image //, and label
S/, were obtained using: I/, = I 0¢ and S, = S,,09,
where “o” denotes a differentiable interpolation opera-
tion implemented based on spatial transformer networks
(STN)33. Briefly, STN consists of a localization network
to regress transformation parameters, a grid generator
to generate coordinates corresponding to image pixels,
and a sampler that applies the transformation parame-
ters to the input image. In particular, for a voxel p in /,,,
its new location p’ was calculated using: p’ = p + D(p).
Since image signal intensities are only defined at integer
locations, we linearly interpolated the signal intensities
at the neighboring voxels of p’ in /, following pre-

vious work3Z: [,0¢(p) = Zaeng) Im(@ Mgepyzn (1-
|p:1 - qd|), where N(p') represents the neighboring vox-

els of p/, d indicates dimensions, and |-| denotes
absolute distance between two locations. For S/, cal-
culation, we split S, into multiple binary images each
representing one class and transformed each of them
using the same operation as /,,,0¢. Note that the warped
image /I, and label S, could be viewed as augmented
I, and S,,, respectively, which were adopted to train a
segmentation network in a supervised manner.

The registration network Reg was optimized by min-
imizing the similarity loss Lgeg sim between the warped
moving image /I, and the fixed image /. In addition, a
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Overview of the proposed registration-based semi-supervised segmentation algorithm. (a) Joint registration and segmentation.

Labeled moving image /,,, and the segmentation S, were aligned with unlabeled fixed image /¢ through deformable registration using Reg. Segr
was trained using I, and S}, in fully supervised manner. Seg,, was trained on /s and S}, in a weakly supervised manner to generate prediction
I5f, which was used to facilitate the registration of /,, and /. (b) TAP that encourages the spatial and temporal consistency between warped
image pair /,, and /], and original image pair /,,, and /. (c) Architecture of TAP. Two input images /, and /, were independently entered into an
encoder to extract features f, and f;,, respectively, which were used to generate channel-wise attention weights W and the final spatial-temporal
feature F that encodes information within and between /, and /. @: element-wise summation, ®: element-wise multiplication. TAR, temporal

attention perceiver.

regularization 10ss Lreg smooth Was adopted to promote
smoothness of the estimated deformation field ¢. These
two terms were combined and used as the baseline loss
of the registration network:

LReg,baseline(Imy lf) = LRegﬁsim(lm°¢: lf) +a- LRegﬁsmooth(¢) ’ (1)

where a denotes the weight of the regularization term.

We employed mean squared error for the simi-
larity loss Lgeg sim and diffusion regularizer on the
differences between neighboring pixels in the defor-
mation field for the regularization loss Lreg smootn, that

. 2
IS, LRegﬁsmooth(qb) = zXeQ [IVe(X)||”, where x and Q
indicate a pixel and the image domain, respectively.

2.3 | Dual segmentation and feedback
on registration

In the DeepAtlas framework?’, warped moving images
Il and warped label S}, and fixed images /; and the

pseudo label S), were used together to train a sin-
gle segmentation network. However, registration error
results in mismatch between /s and S/, and the use
of matched and mismatched data together to train
a single network leads to confirmation bias, poten-
tially impairing the segmentation performance. In this
work, we proposed to train a fully-supervised network
Segr using the matched warped labeled data, and an
independent weakly supervised network Seg,, using
the potentially mismatched unlabeled images and the
pseudo label. This mechanism provides a way to opti-
mize each network effectively using different matched
and mismatched data, and offers additional benefits
because previous studies’® show that using multiple
independent networks enables leveraging the inher-
ent heterogeneity in learning dynamics, enhancing the
robustness of feature learning and network optimiza-
tion. In the proposed approach, Segs and Seg,, share
identical encoder—decoder structures and were inde-
pendently initialized. Seg; parameterized by 6; takes
the warped moving images I, and warped label S,
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as input and generates segmentation prediction P], =
Segs(I]; 6¢). Cross entropy (CE(, )) between S/, and P},
was used as the loss for Segy:

Lseg (P, Sp) = CE(Ppy, Spy) - (2)

Let C be the number of classes. Given manual label P €
{0, 1}¢ and network softmax segmentation output S €
[0, 1]¢,CE(P, S) is calculated as: CE(P. S) = 2521 —pPc.
log(S°), where P° € {0, 1} is the one-hot encoded vec-
tor of P for class ¢, S° €0, 1] is the vectorized cth
component of network output S, satisfying 20021 Se(x) =
1,Vx € Q.

Seg,, was introduced to segment the unlabeled fixed
images /; to facilitate optimization of the registration
network. As shown in Figure 1, Seg, parameterized
by 6, takes the unlabeled fixed images /r and the
pseudo label S/, as input, and produces segmentation
Ps = Seg,(If; 6 ) Similarly, CE(, ) was used for weakly
supervised training of Seg,,:

LSegﬁW(Pf’ S;n) = CE(Py, SI,'n) . 3)

During each training iteration, the parameters of Segy
were frozen when optimizing Seg,,, and Segr was opti-
mized in the same manner. Subsequently, Seg,, was
applied to unlabeled fixed images /I and the resulting
probability maps P was used to generate the segmen-
tation I3f through argmax. Mean absolute error between
network prediction I3f and the input warped moving label
S;, was calculated to provide auxiliary supervision for
the registration module as follows:

LReg aux(Smr Pf Pf X) (4)

XeQ

We think that Reg and Seg, can benefit each
other and improve the overall registration and semi-
supervised segmentation performance. The pseudo
label S),, generated by Reg was used to supervise
the training of Seg, and the quality of S), affects
the optimization of Seg,,. For example, a decent reg-
istration by Reg would generate pseudo label S/, that
matches the unlabeled fixed images /; well, facilitat-
ing optimization of Seg,, and resulting in satisfactory
segmentation prediction l3f for I, which in turn pro-
motes Reg to generate improved S/, through the loss
Lreg aux- In contrast, a problematic registration and the
resulting unacceptable pseudo label S;, would cause
difficulties in optimizing Seg,,, leading to inaccurate
segmentation prediction I3f that adversely affects the
quality of S/, which further hampers the performance
of Reg. In this work, the deformable registration net-
work Reg was optimized with losses encompassing
Lreg baseline that encourages the similarity between

warped labeled images I/, and unlabeled images /¢, sug-
gesting that the resulting pseudo label S}, is appropriate
for optimization of Seg,,. Therefore, we think the regis-
tration module Reg and semi-supervised segmentation
network Seg, benefit each other and their interac-
tion contributes to the improved performance for both
components.

2.4 | Temporal attention perceiver
Commonly used registration models typically enforce
similarity of fixed and warped moving images at image
signal intensity level. Although some studies attempted
to enforce constraints in latent feature space, the fea-
tures are mainly encoded for a single image, introducing
potential biases. Here, we proposed to extract unbiased
features from fixed and moving images by generating
image pairs and exploring inter-image relationships. We
then enforced consistency between the resulting opti-
mized features to constrain the alignment of the fixed
and warped moving images in higher dimensions for
improved registration accuracy, which in turn enhances
the segmentation performance. For example, the fixed
and warped moving images, when well-aligned, are not
only similar between themselves in spatial dimensions,
but also similar with respect to the original moving
image in latent space. Accordingly, we paired the warped
labeled /. and original unlabeled /; images with the orig-
inal labeled data /,, to generate two image pairs (/,,, I],,)
and (/,,,, Ir). We proposed a TAP that takes an image pair
as input and generates final features F,, and F; that
represent the spatial and temporal embeddings within
and between the two images in (I, /,) and (I, ),
respectively. Note that F; extracted from (/,,, Ir) encodes
both the spatial and the temporal information between
» and I¢, and should be consistent with F,, extracted
from /,, and /},. To this end, we enforced consistency
between F; and F,, as a way to constrain the registration
of I, and I by minimizing the loss Lreg 7ap(Ff, Fm) as
follows:

Lreg_ map(Fr, Fir) = lQlZan(x FuI®,  (5)

xeQ

which penalizes the discrepancy between (/,,, I,) and
(Im, ) in feature space. The feature consistency loss
Lreg 1aP(Ff, F) refines cross-instance feature align-
ment for the registration task, and facilitates learning
discriminative features and optimizing the registration to
generate more reliable pseudo label and spatial prior for
improved segmentation.

Figure 1c shows the structure of the TAP that consists
of an encoder and a temporal attention unit. Two input
images I, and I, from an image pair were independently
entered into the encoder to generate spatial features f,
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and f,, respectively. We employed a temporal attention
mechanism to generate channel-wise weights W.In par-
ticular, we convolved and concatenated features f, and
fy,and applied average pooling along spatial dimensions
followed by 1x1 convolution to generate channel-wise
attention W that encodes the relative weight of each
channel. f; and f, were then multiplied with the result-
ing channel weights W, and convolved and summed to
produce the final cross-instance feature F for image pair
(I3, Ip). The proposed TAP module can be formulated
as:

W = Convqy4(AvgPool(Conv(f,) @ Conv(fy))), (6)

F = Conv(f, ® W) @& Conv(f, @ W), (7)

where Conv and Conv4yq represent 3 x 3 and 1x1
convolution, respectively, AvgPool indicates average
pooling, ® and ® denote element-wise summation and
multiplication, respectively.

We note that temporal attention has also been used in
squeeze-and-excitation (SE) networks®4, whereby inter-
dependences between feature channels are explicitly
modeled and used to re-weight the channels of a sin-
gle feature instance. However, channel-wise weights
extracted from a single feature instance, as in SE net-
works, may be sub-optimal due to the intrinsic biases
in feature encoding. Compared with SE** and related
networks, the proposed approach employed temporal
attention in a substantially different manner. In particu-
lar, two images from an image pair were independently
entered into an encoder to extract features subject
to similar level of biases; the resulting two feature
instances were fused and used to adaptively modulate
the channel-wise weights conditioned on the relation-
ships between the two feature instances (Figure 1c),
potentially alleviating the encoding biases and resulting
in more robust channel weight estimation. Subsequently,
the estimated inter-instance channel weights were used
to scale and aggregate the two input features to gen-
erate the final cross-instance feature for the input
image pair. We then enforced consistency between
the resulting features as additional constraints to the
registration task. This strategy also differs from other
commonly used registration models, which typically
enforce similarity between two input images directly in
image space.

Combining Equations (1), (4), and (5), we can formu-
late the total registration loss as:

LOSSReg(/m’ lf) = LRegﬁbaseIine(Im’ If) + LReg?aux(S;n: i:\)f)

+Lreg_1aP(Ft, Fm) - (8)

ALGORITHM 1 Training Process of the Proposed
Semi-supervised Segmentation Algorithm

Input: Reg, Segy, Seg,,, TAP; X cine cardiac MRI
dataset each containing an ED and an ES
frame with a random frame manually
labeled.

Output: Trained Seg; and Reg for segmentation

and registration inference

1 Pre-train Reg with X cardiac cine MRI subjects

each with an ED and an ES frame without manual

label

2 Pre-train TAP with X cardiac cine MRI subjects

each with an ED and an ES frame without manual

label

3 while not converge do

4 | Sample batch data /,,, and S,;,, and If;

// train the registration network Reg to
generate augmented labeled images and
pseudo label

5 | Freeze Segr and Seg,,, train Reg to register /,,

and Sy, to Iy by minimizing Lreg paseline I

Equation (1) to generate /I, and S/, ;

// train the fully supervised
segmentation Segy

6 | Freeze Seg, and Reg, train Seg; using //, and

S/, by minimizing Equation (2) to generate

segmentation prediction P’ ;

// train the weakly supervised
segmentation Seg,

7 | Freeze Segr and Reg, train Seg,, using /r and

S;, following Equation (3);

// apply Seg, to I to provide semantic
information to Reg

8 | Freeze Seg,, to segment /; and generate

segmentation prediction P and .E’f, calculate the

auxiliary 10ss Lreg aux in Equation (4);

// calculate the TAP loss to aid in
optimization of Reg

9 | Calculate the TAP loss Lrey 7ap in Equation (5);

// calculate the total registration loss
to update Reg

10 | Activate and update Reg by minimizing

Equation (8): Lreg_paseline + LReg_aux + LrReg_14P;

11 end

2.5 | Algorithm training process

The registration network, two segmentation networks,
and the TAP module were trained sequentially as
shown in Algorithm 2.5. In particular, the registration
network and the TAP module were pre-trained using
all the subjects in the training dataset without man-
ual annotations. For each training epoch, one of the
networks/module was activated and the others were
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frozen, and the parameters were updated with respect
to the corresponding loss function. Upon training conver-
gence, the trained segmentation Seg; and registration
Reg modules were employed to segment and register
test dataset.

3 | EXPERIMENTS

3.1 | Cine cardiac MRI dataset

3.1.1 | ACDC

The Automatic Cardiac Diagnosis Challenge dataset
(ACDC, https://www.creatis.insa-lyon.fr/Challenge/
acdc/databases.html) consists of 150 subjects recruited
at the University Hospital of Dijon (France). These sub-
jects were evenly distributed in five categories of
cardiac pathologies, including heart failure with myocar-
dial infarction, dilated cardiomyopathy, hypertrophic
cardiomyopathy, abnormal right ventricle, and healthy
volunteers3® For each subject, 2D short-axis cine
images were acquired from the base to the apex at
1.5T or 3.0T (Siemens Aera and Siemens Trio, Siemens
Medical Solutions, Germany) under breath-hold condi-
tions using an SSFP sequence (in-plane voxel size =
1.34-1.68 mm?, slice thickness = 5-10 mm, number of
slices = 6-18, 28—40 frames/slice covering a partial or
complete cardiac cycle). Manual segmentation of the
left ventricular cavity (LV), myocardium (Myo), and right
ventricular cavity (RV) in the ED and ES frames was
performed by an experienced expert.

3.1.2 | M&Ms challenge
The Multi-Centre, Multi-Vendor & Multi-Disease Cardiac
Image Segmentation Challenge (M&Ms, https://www.ub.
edu/mnms/) dataset consists of 375 subjects, of which
345 cases were scanned by Canon (n = 50), Philips (n
= 125), Siemens (n = 95),and GE MR systems (n = 75),
and were manually segmented for LV, Myo, and RV at
the ED and ES frames by an expert clinician.® The 125
subjects scanned by Philips systems were recruited at
two different clinical centers, and included healthy vol-
unteers and patients with diverse cardiac pathologies,
for example, hypertrophic cardiomyopathy, hypertensive
heart disease, and dilated cardiomyopathy. Therefore,
we used these subjects as our study cohort. For each
subject, 2D short-axis cine images were acquired from
the base to apex at 1.5T (Philips Archieva, The Neither-
lands) with the following parameters: in-plane voxel size
= 1.20-1.45 mm?, slice thickness = 9.9 mm, number of
slices = 10—-11, 26-30 frames/slice.

For both datasets, participants’ consent was collected
in the respective studies and was exempted in this work.

3.2 | Algorithm implementation

The 150 subjects in ACDC dataset were divided into 100
subjects for training and 50 cases for testing, both of
which were composed of equal numbers of subjects in
the five pathology categories. Similarly, the 125 M&Ms
subjects were randomly split into 75 and 50 cases for
training and testing, respectively. Prior to network train-
ing, all the datasets were resampled in X=Y plane to a
voxel size of 1.2 x 1.2 mm?, normalized to zero mean
and unit variance, and cropped/padded to a uniform
matrix size of 224 x 224 x18.

We also investigated the utility of the proposed
approach when trained with smaller dataset. In partic-
ular, we further randomly selected two and four cases in
each of the five cardiac pathology categories from the
entire 100 ACDC training subjects, resulting in another
two ACDC training datasets of 10 and 20 subjects,
respectively. Similarly, we randomly selected 15 and 30
subjects from the entire 75 M&Ms training cases as
two additional M&Ms training dataset. Note that both
the ACDC and M&Ms dataset originally contain man-
ual segmentation at both the ED and ES frames for
each subject. For the three training sessions using dif-
ferent numbers of training subjects in each dataset, we
intentionally discarded manual label at random ED or
ES frame for each subject for semi-supervised learning.
For both datasets, testing was performed on both the ED
and ES frames for the same subjects.

The proposed approach was implemented with
Python 3.7.1 and Pytorch 1.7.1 framework on an NVIDIA
V100l graphics processing unit (GPU, NVIDIA Corp.,
Santa Clara, CA, USA) provided by Digital Research
Alliance of Canada. VoxelMorph®? was adopted for the
deformable registration. 2D Unet with ResNet50 as the
backbone of the encoder was employed for the fully and
weakly supervised segmentation. As shown in Figure 1
and Algorithm 2.5, the registration network Reg and
segmentation networks Seg; and Seg,, were optimized
sequentially with the other two fixed during each train-
ing iteration with the following parameters: optimizer =
ADAM, initial learning rate = 4e-4, polynomial decay
rate = 5e-4, batch size = 20, number of epochs = 400.
Note that the TAP was pre-trained and kept frozen dur-
ing the following algorithm training process. During Segs
and Seg,, training, data augmentation including random
rotation (-60~+60°), scaling (0.5~1.5 times), translation
(-60~+60 pixels), and intensity variation (0.5~1.5 times)
were performed in parallel.

3.3 | Evaluation methods

Algorithm segmentation was compared with manual
delineation using the Dice similarity coefficient (DSC,
[0,1]), the average symmetric surface distance (ASSD,
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mm), and the Hausdorff distance (HD, mm). Continuous
variables were presented as mean + standard deviation
(Mean + SD).

In addition, we calculated LV end-diastolic volume
(LVEDV, ml), end-systolic volume (LVESV, ml), stroke vol-
ume (LVSV, ml), ejection fraction (LVEF,%), myocardial
mass (LVMM, g), and RV ejection fraction (RVEF, %)
using the segmentation provided by our approach and
compared these measurements with manual analyses.
For LVMM calculation, a density of 1.05 g/mL was
used.®’

3.4 | Comparison with state-of-the-art
We compared the segmentation accuracy of the pro-
posed approach (Ours) with several recently developed
semi-supervised segmentation methods based on: 1)
pseudo label, for example, CPS,'? UniMatch,'® and
BCP'® 2) consistency regularization, for example, uncer-
tainty aware mean teacher (UAMT),"® DAN2" URPC2°
CCT?* and MambaUnet;?® and 3) atlases: for example,
DeepAtlas?’ and BRBS.2® In addition, we trained a 2D
Unet with the same architecture as Segy and Seg,, using
only one labeled frame and both labeled frames for each
subject in each training dataset. These were used as a
lower bound (Unet_LB) and an upper bound (Unet_UB)
of the segmentation accuracy, respectively. We also
trained the proposed approach using the same training
datasets in a fully supervised manner. In particular, for
each training epoch, we randomly assigned one of the
ED and ES frames as labeled image and the other frame
as unlabeled image to train the proposed approach in a
semi-supervised manner. We then reversed the assign-
ment to train the proposed approach a second time in
the same epoch. This led to a fully supervised version of
the proposed approach (Ours_FS) using the complete
labeled dataset.

For fair comparison, all the methods were trained
and tested on the same subjects and frame(s) without
any post-processing.

3.5 | Ablation studies

We investigated the effects of the weakly supervised
segmentation, the auxiliary loss as feedback on the
registration, and the TAP module in the proposed algo-
rithm framework for both segmentation and registration
(Loss = LReg_baseline + LSeg_f + LSeg_w + LReg_aux +
Lreg 1apP)- This leads to five ablation methods: 1) joint
registration and the fully supervised segmentation for
warped labeled images only (Loss = Lgeg paseiine +
Lseg f) as a baseline; 2) joint registration and fully and
weakly supervised segmentation without the auxiliary
loss as feedback on registration (Loss = Lgreg paseiine
+ Lseg f + Lseg w); 3) joint registration and fully and

MEDICAL PHYSICS ——2r!

weakly supervised segmentation with the auxiliary loss
as feedback on registration (Loss = Lgeg paseline +
Lseg f + Lseg w + Lreg aux); 4) joint registration and
fully supervised segmentation for both unlabeled and
warped labeled images with the auxiliary loss (Loss =
Lreg baseline + Lseg f + Lreg aux), Which is identical to
DeepAtlas; 5) joint registration and fully supervised seg-
mentation for warped labeled images with the TAP (Loss
= LReg baseline + Lseg f + Lreg_1ap). Note that weights
of different terms in the loss function were omitted
for simplicity.

3.6 | Statistical analyses

Paired t-test was performed to compare: 1) DSC pro-
vided by the proposed approach and the other semi-
supervised segmentation methods in Section 3.4, and
2) segmentation and registration DSC provided by the
proposed approach and the third ablation method in
Section 3.5 to evaluate the effectiveness of the TAP
module. Normality of data distribution was determined
using Shapiro—Wilk test and when data did not sat-
isfy normal distribution, Wilcoxon signed rank test was
performed for non-parametric data.

Pearson correlation coefficients (r) were used to
determine the relationships between: 1) the final seg-
mentation and registration accuracies for the ablation
methods in Section 3.5, and 2) the algorithm and man-
ual cardiac function measurements. For each ablation
method, relationships between the segmentation and
registration DSC for RV, Myo, and LV were calculated for
all the subjects in each test dataset. In addition, we cal-
culated the mean segmentation and registration DSC for
RV, Myo, and LV for all the test subjects for each ablation
method, and explored the relationships of the mean seg-
mentation and registration DSC across all the ablation
algorithms (n = 6), including the proposed framework.
Agreement between the algorithm and manual cardiac
function measurements was evaluated using the Bland—
Altman method (bias, 95% limits of agreement [LoA]). All
of the statistical analyses were performed with Graph-
Pad Prism v9.5.0 (GraphPad Software Inc., San Diego,
CA, USA). Results were considered significant when the
probability of making a Type | error was less than 5%
(p<0.05).

4 | RESULTS
41 | ACDC segmentation

Figure 2 shows representative semi-supervised seg-
mentation of a slice of an ACDC test subject provided
by various algorithms trained on 10, 20, and 100 ACDC
subjects each with a random ED/ES frame labeled.
Qualitatively, the proposed approach generated RV, Myo,
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FIGURE 2

Representative segmentation of a slice of an ACDC test subject provided by manual observer (GT) and various algorithms

trained on 10 (15 row), 20 (2" row), and 100 (3™ row) subjects each with a random ED/ES frame labeled. ACDC, automatic cardiac diagnosis

challenge; ED, end-diastolic; ES, end-systolic.

and LV segmentation with much less shrinkage, leakage,
and more complete coverage and smoother contours
in consistency with manual annotation. Of note, the
other algorithms appeared to be more sensitive to the
number of training subjects and the amount of manual
annotations. This was evidenced by the discrepan-
cies between algorithm and manual segmentation when
using 10 and 20 training subjects, which were much
improved when the number of the training subjects
was increased to 100 for the other methods. In con-
trast, the proposed approach was less sensitive to the
size of training subjects and manual annotations, and
demonstrated relatively high degree of agreement with
manual annotation.

Figure 3 shows the segmentation accuracy on the
ACDC dataset (n = 50 subjects) provided by vari-
ous algorithms using 10, 20, and 100 ACDC subjects
each with randomly selected ED/ES label for semi-
supervised training. For the three training sessions, the
proposed approach markedly outperformed Unet_LB,
UAMT,URPC, CCT,CPS, and BRBS by providing greater
DSC and lower ASSD and HD with generally lower SD
for RV, Myo, and LV. Of note, our approach achieved
higher segmentation accuracy than BCP and Mam-
baUNet, which further outperformed UniMatch and
the widely used DeepAtlas, and yielded segmentation
accuracy on par with Unet_UB.

As shown in Table 1, our approach achieved DSC
of {0.910+0.063, 0.894+0.024, 0.934+0.056}, ASSD of
{1.37+0.063, 1.20+1.12, 1.25+1.63} mm, and HD of
{6.38+2.99, 4.67+3.22, 3.97+5.76} mm for {RV, Myo,
LV} when trained using 100 subjects. The RV DSC was
greater (p<0.05) and the Myo and LV DSC were lower
(p<0.05) than Unet_UB, and these were consistently
greater than DeepAtlas (p<0.05 for 3/3 of the cases)
and BCP (p<0.05 for 3/3 of the comparison). Table 2

shows that the performance of all the algorithms, includ-
ing the proposed approach, was reduced as expected
when using 20 training subjects. Compared with BCP our
approach yielded consistent improvements of 0.005—
0.009 for DSC (p<0.05 for 2/3 of the cases),0.11-0.016
mm for ASSD and 0.34-1.40 mm for HD. Similar to
that using 100 subjects for training as in Table 1, our
approach yielded comparable toward somewhat lower
DSC (p<0.05 for 1/3 of the cases) and higher ASSD and
HD for RV, Myo, and LV compared with Unet_UB. Very
similar trend was observed when the number of train-
ing subjects was reduced to 10 (Table 3). As expected,
the segmentation accuracy for all the methods was
decreased except for Unet_LB, which surprisingly wit-
nessed improved accuracy. Interestingly, our approach
outperformed Unet_UB (p<0.05 for 3/3 of the DSC com-
parison) and yielded the highest accuracies among all
the comparative methods (p<0.05 for 39/39 of the DSC
comparison). For these experiments, BCP yielded the
highest accuracies than the other comparative meth-
ods. Our approach outperformed BCP in the majority
of the cases (p<0.05 for 8/9 of the DSC measure-
ments), and achieved similar segmentation accuracies
as Unet_UB when using 100 training subjects (Table 1)
and higher accuracies when using 10 training cases
(Table 3). Notably, the proposed approach trained in a
fully supervised manner, that is, Ours_FS, performed
similarly well to Ours and Unet_UB when using 100
ACDC subijects for training (Table 1), and much better
than the two methods when trained on 20 (Table 2) and
10 (Table 3) ACDC subjects.

4.2 | M&Ms challenge segmentation
Figure 4 illustrates a slice of an M&Ms test subject seg-
mented by various algorithms trained using 15, 30, and
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FIGURE 3 ACDC segmentation results (n = 50 subjects) provided by various algorithms trained on 10, 20, and 100 ACDC subjects each
with a random ED/ES frame labeled. Error bar represents the standard deviation of the data. ACDC, automatic cardiac diagnosis challenge; ED,

end-diastolic; ES, end-systolic.

75 M&Ms subjects each with randomly selected ED/ES
label for training. Similarly, all the comparative methods
experienced various degrees of problematic segmenta-
tion, and these issues were alleviated with the increase
of training subjects. In contrast, our approach demon-
strated very similar segmentation accuracies regardless
of the sizes of training datasets.

Figure 5 illustrates the segmentation accuracy
on 50 M&Ms test subjects for various algorithms
trained using 15, 30, and 75 M&Ms training sub-
jects. For the three training sessions, UniMatch, BCP,
MambaUNet, and DeepAtlas generally outperformed
Unet_LB, CPS, UAMT, DAN, URPC, CCT, and BRBS.

BCP vyielded higher DSC and lower ASSD and
HD compared with UniMatch and MambaUNet, and
higher DSC toward slightly greater ASSD and HD
than DeepAtlas. Our approach, in general, noticeably
improved DeepAtlas segmentation accuracies and out-
performed BCP toward slightly lower accuracies than
Unet_UB.

Table 4 shows that, compared with BCPE, our approach
yielded DSC improvements of 0.008, 0.008, and 0.006
for RV, Myo, and LV, respectively, using 75 training
subjects. These improvements were 0.009, 0.007, and
0.006 when using 30 training subjects (Table 5), and
were 0.015, 0.010, and 0.007 when using 15 training
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TABLE 1 Algorithm segmentation of n = 50 ACDC subjects for various methods trained on the same 100 ACDC training subjects each

with random ED/ES frames labeled.

RV Myo Lv
Method DSC([0,1]) ASSD(mm) HD(mm) DSC([0,1) ASSD(mm) HD(mm) DSC([0,1]) ASSD(mm) HD(mm)
Unet_LB 0.88759000T  1.914¢7 9.28;51  0.86159090"  1.4004; 1018149  0.92039%2 136057 4.894 05
CPS 0.855590001  2.73,,, 1032530 0.8620990% 17043 8.07557 0.91539024  1.48,49 5.504 83
UniMatch 0.88809952  1.78, 8.30403  0.872000%9  1.564 46 6.07415 0.91209%4  1.63;12 5.167 49
BCP 0.90209835  1.4506, 75035  0.88500277  1.28y4 5.80, g9 0.92009928 .15 49 4.205 30
UAMT 0.87459599" 258,49 11.35605  0.8565090" 24954, 12281194 0.91609052  1.9550, 5.905.47
DAN 0.84959599" 252, 49 11.36649  0.84859000" 195,47 8.89.99 0.91329972 1.515gs 5.35,4 45
URPC 0.8605990°" 212,69 8.935 01 0.865099° 134262 5.13g 49 0.9220915¢  1.23, 5 3.83754
ccT 0.872599901 2,15, 45 9.9677,  0.8670991°  1.624 8.3375 0.92150049  1.460,9¢ 5.804 66
MambaUNet  0.896001" 1.64¢76 766365  0.8770072°  1.4445, 5.603 gg 0.918001%%  1.501g6 47669
DeepAtlas 0.89800297  1.72gg 767339  0.8670000°  1.46049 6.30404 0.91979993  1.434g9 4.82535
BRBS 077159900 2.844 7 1464737  0.775;9000"  2.060g3 102052,  0.85955%°"  2.2045, 8.425 50
Ours 0.910( o63 1.37063 6.38,99  0.894( 24 1.20, 4, 4.675, 0.934 956 1.254 63 3.97576
Ours_FS 0.906505°"  1.4469 6.68304  0.8930%88  1.12)5 4.61365 0.940505%°"  1.13444 3.63573
Unet_UB 0.9055099"  1.486 6.35,55  0.89500010  1.050 45 4.403 09 0.94150990T  1.0234 317163

p —value

Note: Results are shown for Meang, and bold indicates higher performance.

Abbreviations: ACDC, automatic cardiac diagnosis challenge; ED, end-diastolic; ES, end-systolic.

TABLE 2 Algorithm segmentation of n = 50 ACDC subjects using various methods trained on the same 20 ACDC training subjects each

with random ED/ES frames labeled.

RV Myo Lv

Method DSC([0,1]) ASSD(mm) HD(mm) DSC([0,1]) ASSD(mm) HD(mm) DSC([0,1]) ASSD(mm) HD(mm)
Unet_LB 0.58359%00" 1257, 46.93555  0.60959500"  15.79, 4, 10246597  0.737;0000" 15314 3 21.57503
CPS 0.54355920"  9.6310,95 28.941955 0741500001 531455 2742155,  0.83959990"  3.40,45 13.42g 84
UniMatch 0.78550.0001 4 g1 19.67 0.809<00001 5 78 10.97 0.8830:0041 3 11 10.61

0.120 4.99 14.48 0.085 2.75 9.31 0.095 3.53 10.32
BCP 0.80509372  3.90;355 16.501p00 0.8250:9295 225, ,, 9.307 89 0.90209%82 255, g5 8.505.20
UAMT 0.63859990"  10.799 77 44.035157  0.6105920°"  15.335 59 110.95,145  0.7695500" 1213545 75.6853 27
DAN 0.440550%0"  10.24 44 3248195,  0.643355" 758529 37102470 0764595007 45434 17.77 1107
URPC 0.47055220"  8.007.74 26.071745 0.87750000" 524549 16991655  0.79455900"  3.03;3 10.529 .95
ccT 0.592599%0"  8.174334 26.9350 0.73759990"  5.299 6 2186332,  0.82359500"  3.36050 14.49,0 64
MambaUNet  0.792099%8  4.44, 4 18131335 0.81705957  2.57;5, 10.135 60 0.8920 0352 2.87326 9.79 57
DeepAtlas 0.747;5%00"  5.94; g 2019575  0.80709037  2.39,5 10.975.02 0.89750317  2.01,,3 7.81545
BRBS 0.6725990%"  8.98495 46.774035  0.6555500°"  4.79344 3290551  0.77255%07  6.72 5 32.49,5 57
Ours 0.8100 129 3.70554 15101119 0.834q 056 214, 4, 8.44; 4, 0.909 057 2.39, 7, 8.167.93
Ours_FS 0.85959990" 233,55 10.30g60  0.86159090T  1.464 76 6.54,4 47 0.91909%86 1,65, 9 5.895 45
Unet_UB 0.837590%0"  2.731 69 1150733  0.8310080  1.733 7.0637¢ 0.91159%%9  1.881; 6.465.13

p —value

Note: Results are shown for Mean and bold indicates higher performance.

SD

Abbreviations: ACDC, automatic cardiac diagnosis challenge; ED, end-diastolic; ES, end-systolic.

subjects (Table 6). For the three training sessions, our
approach vyielded accuracies that were approximately
0.01 lower in DSC (p<0.05 for 3/9 of the cases), 0.3 mm
higher in ASSD, and 1.3 mm higher in HD, compared
with Unet_UB. Although the segmentation accuracies
for all the algorithms were decreased when the num-
ber of training subjects was reduced from 75 to 15,
BCP, DeepAtlas, and our approach exhibited lower

decline than the other methods and our approach
outperformed BCP (p<0.05 for 2/9 of the DSC com-
parison) and DeepAtlas (p<0.05 for 9/9 of the DSC
comparison) in general. For these cases, the proposed
approach trained in a fully supervised manner, that is,
Ours_FS, yielded somewhat overall comparable accu-
racies to Unet_UB and slightly higher performance than
Ours.
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TABLE 3 Algorithm segmentation of n = 50 ACDC subjects using various methods trained on the same 10 ACDC training subjects each
with random ED/ES frames labeled.

RV Myo Lv

Method DSC([0,1]) ASSD(mm) HD(mm) DSC([0,1]) ASSD(mm) HD(mm) DSC([0,1) ASSD(mm) HD(mm)
Unet_LB 0.64959000" 844435 25231503 0.692;9200"  6.32, 15 394553  0.8155900°7  3.87,4, 17.7540.59
CPS 0434599001 18.71p104  46.003541 059459900 10714336 41745600 0.6405999"  10.9214¢0 32.8004 94
UniMatch 0.75009923  5.0255 24314910 0.7640993  3.6534¢ 156.551570 0.8480907¢  3.6034; 13.344 16
BCP 0.75809934 419, 44 20.001500 0.77139133  3.00,49 12504000 0.855093%4  3.00, 40 11.00g g0
UAMT 0.43159990"  10.9443, 33.302150 0.5335500°" 10144459 33.275479  0.6295%00%" 71276 20.334364
DAN 0.423599901  19.0454 3, 46.403313 0.5083950%"  15.975, 7 4410505 0.58259990"  16.4p4 6 36.4049 71
URPC 04795520 9.91553 26.072250 0.58555000"  7.234451 20.84199 0.6787500%"  6.431465 15.7450.38
CCT 0593590007 1141435,  36.275650 070959007 8.2946 44.04335, 0.77655%0°"  9.00950 37.372964
MambaUNet  0.75259%3"  4.63,57 22441763 0.7620095°  3.37344 1435117, 085139132 3.32344 12.314122
DeepAtlas 0.7680917° 457,46 2019675 0.77959233 2,90, 12661044 0.86200077  3.01223 11.5941 30
BRBS 0.504599%0"  15.851939 52474562 0.58259900"  6.79g 44 4113343 072955007 8.4997, 37.693373
Ours 0.7730 153 3.86,4 05 18.701,70  0.7860 075 281545 12.00,;  0.870g 103 2.77263 10.30q 35
Ours_FS 0.84259990"  2.84, 74 11.98747  0.835590001 2,08 g5 9.057 g1 0.90259599"  2.335 44 8.159.20
Unet_UB 0.69659500" 8784537 23115506  0.7265599°"  3.69313 1457131, 0.841599001  3.42; ¢ 13.6645.77

p —value

Note: Results are shown for Meang and bold indicates higher performance.

Abbreviations: ACDC, automatic cardiac diagnosis challenge; ED, end-diastolic; ES, end-systolic.

30 subjects 15 subjects

75 subjects

FIGURE 4 Representative segmentation of a slice of an M&Ms test subject provided by manual observer (GT) and various algorithms
trained on 15 (15 row), 30 (2™ row), and 75 (3™ row) subjects each with a random ED/ES frame labeled. ED, end-diastolic; ES, end-systolic.

4.3 | Cardiac function measurements

For our approach trained using 100, 20, and 10 ACDC
subjects, supplementary Figures S1-S3 show that there
were strong (r>0.89) and significant (p<0.0001) cor-
relations between algorithm and manual LV function
measurements. Likewise, algorithm LV function mea-
surements were strongly (r>0.88) and significantly
(p<0.0001) correlated with manual analyses when using
75, 30, and 15 M&Ms subjects for training, as shown in
supplementary Figures S4—S6. For both datasets, algo-
rithm RVEF measurements were correlated (r>0.72,

p<0.0001) with manual measurements except for algo-
rithm training using 20 ACDC and 10 M&Ms subjects,
which exhibited weak but significant correlations (ACDC:
r = 0.384,p = 0.0056; M&Ms:r = 0.390, p<0.0001)
and relatively low degree of agreement (ACDC: bias
= -26.13%, 95%L0oA = [-136.3%, 84.07%]; M&Ms: bias
= -10.44%, 95%LoA = [-78.72%, 57.84%]). In general,
Bland—Altman analyses indicated that there was promis-
ing agreement between algorithm and manual LVEDV,
LVESV, LVSV, LVEF, LVMM, and RVEF measurements,
with greater variances when the numbers of training
subjects were reduced.
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FIGURE 5 M&Ms segmentation results (n = 50 subjects) provided by various algorithms trained on 15, 30, and 75 M&Ms subjects each
with a random ED/ES frame labeled. Error bar represents the standard deviation of the data. ED, end-diastolic; ES, end-systolic.

4.4 | Effects of Seg,, TAP, and Lg.y ..« by 0.027,0.020,and 0.009 for the M&Ms subjects. Com-

on segmentation and registration pared with Reg + Segf + SegW + LReg_aum exclusion of
the auxiliary loss steadily and moderately reduced DSC

Table 7 reveals the impact of various components on Py 0.004 to 0.017 for the ACDC and M&Ms dataset, and

segmentation for different ablation methods trained on  these were 0.003 to 0.052 when Seg,, was excluded,
20 ACDC and 30 M&Ms subjects. For the ACDC test that is, DeepAtlas. Integration of the TAP module yielded
dataset, Seg,, demonstrated effectiveness by improving  Similar effects as the Seg,, toward slightly greater overall
the baseline (Reg + Seg;) DSC by 0.056, 0.009, and -  DSC for the three heart structures. Among these combi-
0.001 for RV, Myo, and LV, respectively. Likewise, these ~ Nations, the highest DSC was achieved when Seg,,, TAR
improvements were 0.007, 0.015, 0.007 for the M&Ms ~ @nd Lreg aux were utilized. _

dataset. TAP (Reg + Segr + TAP) boosted the baseline Flgure; 6 illustrates the registration of a fixed and a
DSC by 0.047,0.005,and 0.006 for the ACDC cases,and ~ moving image from an ACDC and an M&Ms challenge
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TABLE 4 Algorithm segmentation of n
with random ED/ES frames labeled.
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50 M&Ms subjects using various methods trained on the same 75 M&Ms training subjects each

RV Myo Lv
Method DSC([0,1]) ASSD(mm) HD(mm) D;C([O,ﬂ) ASSD(mm) HD(mm) DSC([0,1]) ASSD(mm) HD(mm)
Unet_LB 0.867009%% 1.9 4.055 54 0.8400004%  1.550¢3 5.643 65 0.89100074  1.540¢7 6.665 91
CPS 0.855599%0" 2084 3 5.095 g0 0.834599001 1,97, 49 7.765 86 0.88309983 174,45 8.25, 33
UniMatch 0.865;59%0" 2,014 49 551595 0.83659000" 158059 6.18520 0.88999192 164050 8.23163
BCP 0.87509%87  1.820¢5 4.60310 0.84809523 14245 5.504 00 0.900095%4  1.450 55 7.204 50
UAMT 0.80359999" 256, 9 5.45g 3 0.82359.999" 1,90, 54 8.9810.1  0.89059%2  1.67,34 10.217.45
DAN 0.83259990" 249, 5 6.9773 0.79059990" 228, 46 1129764  0.8605990°7  2.08, 9 10.81593
URPC 0.83959%0%" 247575 8.937 54 0.8255900%"  1.985¢62 5.139 49 0.8735990%" 184560 3.835 01
ccT 0.82959900" 2,405 49 9.964 57 0.8395997° 18550, 8.337.10 0.88259975 17353 5.805 14
MambaUNet  0.8645317°  2.06g5 5.095 41 0.8370005°  1.6705s 6.70564 0.88700%5"  1.780¢, 8.125 99
DeepAtlas 0.8697022"  1.91046 4274 0.845003%7 155/, 6.193.08 0.88970%8° 1514, 8.145 55
BRBS 0.82159900" 23345 10485054 0.824593°"  1.92q4, 12981530  0.87609938  1.791049 14.8746.46
Ours 0.883( 07, 1.72)79 4.25, 63 0.856 045 1.34( 45 5.15, g3 0.906 o65 1.370.49 6.861 36
Ours_FS 0.887095%3  1.63075 6.545 07 0.86409472 13406, 5.18, 37 0.91509832  1.400 77 4.05, g7
Unet_UB 0.88909702 1,65, ¢ 3.62; 66 0.86509554 131068 5.05, 33 0.91409925 132 755 6.544 53

Note: Results are shown for Meanggva'ue

Abbreviations: ED, end-diastolic; ES, end-systolic.

TABLE 5 Algorithm segmentation of n
with random ED/ES frames labeled.

and bold indicates higher performance.

50 M&Ms subjects using various methods trained on the same 30 M&Ms training subjects each

RV Myo Lv
Method DSC([0,1]) ASSD(mm) HD(mm) D;C([O,ﬂ) ASSD(mm) HD(mm) DSC([0,1]) ASSD(mm) HD(mm)
Unet_LB 0.80659990" 2,04, 34 6.144 64 0.80659900"  2.83) 75 7.98408 0.87659000"  2.04084 9.36, 45
CPS 0.83209033 257,54 5.16g 29 0.80859900" 228355 974154  0.8765000°7 165145 10.005 o7
UniMatch 0.84309973 286357 7.926.90 0.82809956  1.96, 59 8.024 67 0.87999990  2.004.1¢ 10.533.50
BCP 0.85209572  2.38,63 5.504 70 0.83609837  1.6505 6.503.20 0.88809524 1,650 49 8.505 70
UAMT 0.79350390" 271544 6.875.95 0.74459590" 238, 5, 11.024135 0.821599007 2,06, 47 11.32705
DAN 0.73255000" 423355 18311060 0.665555°"  4.42355 23121504  0.7485903%"  4.66407 16.9849 70
URPC 0.82259900" 248,35 5.257 41 0.79759200" 214,54, 8.664.13 0.8615590%" 182 9.053 74
ccT 0.79259%0" 270505 5.03; 47 0.80459200" 212505 8711061  0.8715590%7  1.6208 10.435 49
MambaUNet ~ 0.841301%9 2,645, 6.11534 0.823590001 181, g 7.40564 0.874590001  1.85055 9.72500
DeepAtlas 0.82400024 211,55 5.165 52 0.80759900" 160004 6.954 45 0.88059178  1.600¢1 8.78347
BRBS 0.7275959"  4.41555 11884407  0.7155900°"  3.02;33 1514157  0.8205900° 2,90, 49 16.08505
Ours 0.8610 054 2.20,5, 5.154 37 0.843 955 1.515 99 6.17501 0.894 o7 1.54 6o 8.10, 59
Ours_FS 0.86709852 2,404 9431050  0.8530017¢  1.41565 5.94, g1 0.902094%5  1.39)64 4.32, 43
Unet_UB 0.87093531 166097 3.785.04 0.83705103 128045 5.105 44 0.90199825 13504, 6.831 70

p—value

Note: Results are shown for MeanSD

Abbreviations: ED, end-diastolic; ES, end-systolic.

and bold indicates higher performance.

subject provided by various combinations of Lgey aux:
Seg,,, and TAP with the baseline model, which consists
of Reg and Segr only. Table 8 shows the effects of
Segy, TAR and Lreg aux On ED and ES frames regis-
tration when these networks were trained on the same
20 ACDC and 30 M&Ms subjects as that in Table 7.
Very similar trend was observed as for the impact of
these modules on the segmentation task. For example,

incorporation of Seg,, dramatically improved the base-
line (Reg + Segr) registration DSC by 0.038,0.071,0.72
for RV, Myo, and LV, respectively, for the ACDC dataset,
and these were 0.021, 0.005, and 0.015 for the M&Ms
dataset. The registration accuracy dropped moderately
when the feedback from the weakly supervised seg-
mentation on the registration was disconnected, that is,
without Lreg aux- The TAP module on top of the baseline
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TABLE 6 Algorithm segmentation of n = 50 M&Ms subjects using various methods trained on the same 15 M&Ms training subjects each
with random ED/ES frames labeled.

RV Myo Lv

Method DSC([0,1]) ASSD(mm) HD(mm) DSC([0,1]) ASSD(mm) HD(mm) DSC([0,1]) ASSD(mm) HD(mm)
Unet_LB 0.73259900"  6.955 45 25.87q55  0.78259000" 286413 1856403  0.8165050°"  2.800¢5 14.645 55
CPS 0.79359%00" 321544 8.231002  0.7585900" 275,55 124559,  0.837593%"  2.55;5 13.065 34
UniMatch 0.83209218  2.83;45 8.55, 35 0.81300079  1.94 5 7.955 85 0.87300983 2254 10.454 55
BCP 0.83109204 26559 6.004 50 0.81839232  1.8007¢ 7.703.30 0.89209793  1.85; 9 10.023 70
UAMT 0.80559599"  3.32;4g 6.537 65 0.759593%"  3.07544 10514091 0.8365950°"7 2,53 g 10.956.53
DAN 0.75359990" 249347 22941043 0.64455590" 228, 31.021635 0723550007 2.0859 20.1942.79
URPC 0.75955920"  3.32557 7721020  0.708590°"  3.0732 13641275  0.803355°"  2.53505 12.6243
ccT 0.74555900"  3.83353 769006  0.75759%0%"  2.83375 12561574 0.8333999"  2.19;45 14.435 47
MambaUNet ~ 0.826599%  2.9545 7.25535 0.8080095°  2.024 04 8.71363 0.87100938  2.0541g 11.344 50
DeepAtlas 0.8300077°  2.65554 5.53; 45 0.81200183 16807, 7.3933, 0.87950126  1.78y75 10.63553
BRBS 0.67359%%"  5.05555 24411997 0.63955200"  3.49;55 19.351955  0.78335900"  4.7344 22.39,5 49
Ours 0.846 077 2.46, 45 5.684 93 0.828 075 1.68; 5, 72653 0.899 057 171095 9.45; 47
Ours_FS 0.865000%°  2.26474 8.875.04 0.84109986  1.49, 74 6.28574 0.89905900  1.56¢5 5.093 g6
Unet_UB 0.862091%5 22445 4.20507 0.83600244 154045 6.023 57 0.90132989 1,464 8.115 58

Note: Results are shown for Meangava'ue and bold indicates higher performance.

Abbreviations: ED, end-diastolic; ES, end-systolic.

TABLE 7 Effects of the major components on algorithm segmentation using 20 ACDC and 30 M&Ms challenge subjects for training.

Components ACDC (n = 50) M&Ms (n = 50)

Segy LReg_aux TAP RV Myo Lv RV Myo Lv
0.7479.110 0.807055 0.8970078 0.824¢ 098 0.8070.065 0.880¢ 067
v 0.803¢.092 0.816¢.072 0.896¢ 056 0.831¢.078 0.822¢ 094 0.887¢.104
y y 0RORE  0EY  0SORRP  OBEE'  0sRY 08
v 0.756¢.125 0.812¢,093 0.899,078 0.828¢ 118 0.8100.106 0.881¢.132
v 0.794¢,098 0.812¢,085 0.903¢.075 0.857¢.108 0.827¢,088 0.8899.093
v v v 0.8100, 126 0.834 055 0.909 56, 0.8610,054 0.843 555 0.894 571

Note: The baseline model consists of the registration and the fully supervised segmentation for warped labeled images only. Results are shown for Mean‘s’;’alue and
bold indicates higher performance.
Abbreviations: ACDC, automatic cardiac diagnosis challenge; TAP, temporal attention perceiver.

TABLE 8 Effects of the major components on ED and ES frame registration using 20 ACDC and 30 M&Ms challenge subjects for training.

Components ACDC (n = 50) M&Ms (n = 50)

Segy LReg_aux TAP RV Myo Lv RV Myo Lv
0.7140.182 0.6170.256 0.7750.132 0.6380.198 0.6300.153 0.7980.128
v 0.7530.107 0.6660 12 0.8310.112 0.631.125 0.6260 184 0.7910.108
y y 0TSIEO 0eeSRY 0BT oeSRIE  0sS 01D
v 0.7310.125 0.6300.132 0.796¢.114 0.639.109 0.628¢ 131 0.804¢,0s2
v 0.7600.090 0.6770.138 0.849 095 0.657¢.112 0.6360.164 0.817¢.077
v v v 0.769 10 06920113 0.854 505 0.6620 125 0.642, 15, 0.825 085
TransMorph 0.7220114 0639103 0.8070.130 0.6440 157 0.6350,133 0.8160.107

Note: The baseline model consists of the registration and the fully supervised segmentation for warped labeled images only. Results are shown for Mean’;E,"a'”e and
bold indicates higher performance.
Abbreviations: ACDC, automatic cardiac diagnosis challenge; ED, end-diastolic; ES, end-systolic; TAP, temporal attention perceiver.
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LReg_auz + TAP LReg_auz + Segw
+ TAP

LReg_auz + Segw

lllustration of ED and ES frame registration for an ACDC and an M&Ms subject using various ablation methods. The baseline

model contains the registration and the fully supervised segmentation for warped labeled images only. Original and deformed manual masks
were overlaid (2" row) on the fixed, moving, and deformed moving images (15 row). ED, end-diastolic; ES, end-systolic.

framework yielded similar results as that of Seg,,. Com-
bination of Seg,,, TAR and Lrey aux Yielded the highest
DSC among these ablation methods and TransMorph 38

4.5 | Relationships between registration
and segmentation accuracies

Table 9 shows the Pearson correlation coefficients
between segmentation and registration DSC for vari-
ous combinations of Reg, Segr, Segy,, TARand Lreg aux
trained on the same 20 ACDC and 30 M&Ms subjects
as that in Tables 7 and 8. For 28/36 cases, there was no
correlation (p>0.05) between segmentation and regis-
tration DSC. For the remainder, segmentation DSC was
weakly (n = 7,0.200<r<0.399, p<0.05) and moderately
(n = 1,0.400<r<0.699, p<0.05) correlated with registra-
tion DSC. Considering all the ablation methods and the
proposed approach, there was strong correlation (r>0.6)
between segmentation and registration DSC at a patient
population level.

5 | DISCUSSION

Semi-supervised learning provides a way to allevi-
ate the critical requirement of manual annotation for
algorithm training, which requires numerous medical
resources and hinders efficient clinical workflow. In this
work, we developed an approach, based on the Deep-
Atlas framework, for semi-supervised cine cardiac MRI
segmentation. Our technical contributions include: 1)
incorporation of two independent segmentation mod-
els, one for fully supervised training using matched
data provided by a registration module and the other
for weakly supervised training using potentially mis-
matched pseudo label and original unlabeled images,
2) development of a temporal attention perceiver that
explores inter-image relationships to generate optimized
cross-instance features, enabling constraint of the align-
ment of fixed and warped moving images in higher
dimensions for improved registration performance. For
two public cine MRI datasets, we demonstrated: 1) effec-
tiveness of the dual segmentation and the TAP module
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TABLE 9 Pearson correlation coefficients r (p-value) between segmentation and registration DSC for RV, Myo, and LV for the ACDC and
M&Ms test datasets for each ablation method and across all the ablation methods.

Components ACDC (n = 50) M&Ms (n = 50)

Segy LReg aux TAP RV Myo Lv RV Myo Lv
0.349(0.013) 0.372(0.079) 0.156(0.278) 0.121(0.403) 0.304(0.032) 0.061(0.674)
v 0.199(0.167) 0.377(0.007) 0.205(0.153) 0.164(0.254) 0.228(0.112) 0.053(0.714)
v/ v/ 0.171(0.235) 0.306(0.031) 0.088(0.544) 0.167(0.028) 0.218(0.129) 0.013(0.931)
v/ 0.256(0.068) 0.349(0.038) 0.122(0.457) 0.188(0.725) 0.357(0.092) 0.117(0.245)
v 0.173(0.229) 0.272(0.056) 0.219(0.127) 0.144(0.317) 0.213(0.138) 0.215(0.134)
4 v 4 0.311(0.028 0.422(0.002) 0.062(0.667) 0.099(0.492) 0.168(0.241) 0.122(0.398)

)
Across all ablation methods )

0.907(0.013 0.723(0.105)

0.732(0.098) 0.920(0.009) 0.816(0.048) 0.628(0.181)

Abbreviations: ACDC, automatic cardiac diagnosis challenge; DSC, Dice similarity coefficient; LV, left ventricular cavity; Myo, myocardium; RV, right ventricular cavity;

TAPR, temporal attention perceiver.

as well as the entire pipeline for algorithm segmen-
tation and registration; and 2) promising segmentation
and registration accuracies that outperformed several
state-of-the-art methods and approached fully super-
vised segmentation when using relatively small datasets
and under annotations for training.

For both the ACDC and M&Ms datasets, we achieved
higher segmentation accuracies using the proposed
approach compared with UniMatch, BCP, MambaUNet,
and DeepAtlas, which outperformed the other com-
parative semi-supervised segmentation methods. This
may be because of the use of the dual segmenta-
tion networks for separate fully and weakly supervised
segmentation and the TAP module for registration
refinement in latent feature space in higher dimensions.
In atlas-based methods, the same network was used
to segment the labeled and the unlabeled images in a
fully supervised manner,and anatomy similarity between
the segmentation of the labeled and unlabeled images
were enforced to improve the registration. However, reg-
istration error may lead to mismatch between the fixed
unlabeled images and the resulting pseudo label, lead-
ing to issues in training the segmentation network. In
contrast, we employed an additional segmentation net-
work Seg,, that takes the fixed unlabeled images and
the potentially mismatched pseudo label as input and
trained Seg,, in a weakly supervised manner with cross
entropy as the loss, as previously suggested,* poten-
tially minimizing the issues in training Seg; and Seg,,
using a single network. Compared with DeepAtlas that
uses a single segmentation network, the dual segmen-
tation design yielded substantially greater DSC for both
the ACDC and M&Ms datasets. As shown in Table 7,
the incorporation of Seg,, improved DSC by 0.003—
0.052 for the ACDC datesaet and 0.01-0.02 for the
M&Ms dataset, compared with DeepAtlas. The BRBS2®
model provides a way to improve the registration of fixed
and moving images leading to more accurate alignment
between the fixed images and pseudo label. Although
effective, this approach explored inter-subject registra-
tion and did not consider the spatial and temporal

constraint between cine frames, resulting in sub-optimal
registration that may impede the following segmenta-
tion. Here, we introduced a novel TAP model to generate
optimized features for image pairs by leveraging the
relationships between the feature instances extracted
from two images. The resulting features related to the
warped moving image and original fixed images were
used to enforce spatial and temporal consistency and
minimize the discrepancy between the original (/,,, If)
and the warped (I, I,) image pairs at feature level,
leading to improved registration and segmentation per-
formance, as evidenced in Tables 8 and 7, respectively.
In addition, we enforced the similarity between the seg-
mentation of the fixed image and the pseudo label as an
auxiliary loss to the registration module, further improv-
ing the registration and segmentation performance, as
evidenced in Tables 8 and 7, respectively. This is likely
because the weakly supervised segmentation network
provides semantic information to the registration net-
work, enhancing its perceiving ability of the heart region.
As a result, the registration network focuses more on the
foreground and generates more accurate registration
and more realistic warped images and label for training
the two segmentation networks.

As shown in Table 9, we observed weak toward no cor-
relation between segmentation and registration DSC for
each ablation method. This may be because the correla-
tion was calculated at a subject level,and the registration
module, which provides matched warped images and
label that may be viewed as a way of data augmentation,
is relatively independent from the fully supervised seg-
mentation module. For example, there are cases where
the registration of ED and ES frames is challenging yet
the fully supervised segmentation remains relatively
straightforward. When the segmentation and registration
DSC were averaged for each test dataset of 50 sub-
jects, we observed strong correlation (r = 0.628-0.920,
Table 9) between the mean segmentation and registra-
tion DSC across the n = 6 variants of the proposed
algorithm, suggesting an overall correlation between the
registration and the fully supervised segmentation at a
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population rather than individual subject level. We also
investigated the correlation between registration and the
fully supervised segmentation across the n = 6 abla-
tion methods at an individual subject level. As expected,
we observed weak-to-moderate correlation r =
0.426+0.178, 0.403+0.168, 0.478+0.183, 0.461+0.316,
0.415+0.257, and 0.484+0.327 for RV, Myo, and LV in
the ACDC and M&Ms test datasets, respectively (data
not shown). These results suggest that, overall,improved
registration facilitates the following segmentation at an
individual subject level, and the trend was strengthened
at a population level. As shown in Table 8, while the
baseline framework comprised of the registration model
and the fully supervised segmentation model yielded
lower registration DSC for both ACDC and M&Ms test
datasets compared with TransMorph, our proposed
approach outperformed TransMorph by a large margin.
These results suggest the utility of the weakly super-
vised segmentation and the TAP model in facilitating
the deformable registration of ED and ES frames.

We also demonstrated the potential of our approach
using relatively small datasets for algorithm training. As
shown in Tables 1-3 and Tables 4—6, our approach
yielded higher DSC and lower ASSD and HD than
the other semi-supervised segmentation methods, and
these are quite similar to fully supervised learning,
which required twice the amount of manual label for
training. As in Tables 2 and 5, we achieved greater
DSC for Myo compared with Unet_UB when using
20 ACDC and 30 M&Ms subjects for training. Notice-
ably, our approach yielded uniformly greater DSC and
lower ASSD and HD when using 10 ACDC subjects
each with a random ED/ES frame labeled for train-
ing, compared with Unet_UB that used both ED and
ES label for training. This may be because fully super-
vised learning methods, for example, Unet_UB, did not
explicitly explore the relationships between ED and
ES frames while our approach utilized the TAP mod-
ule to improve the registration, which provided data to
train the dual segmentation networks, implicitly lever-
aging the relationships between the two frames. In
addition, our approach utilized deformable registration
as a way to generate numerous intermediate warped
images and labels that match unlabeled frames, lead-
ing to potentially more realistic and more effective data
augmentation. Although the proposed approach outper-
formed Unet_UB when trained on 10 ACDC subjects
(Table 3), different phenomenon was observed when
using fewer subjects from the M&Ms dataset as in
Table 6. This may be because of the use of a rel-
atively greater number of training subjects from the
M&Ms dataset, that is, 10 subjects from ACDC versus
15 cases from M&Ms. To verify these findings, we trained
the proposed approach and Unet_UB by reducing the
original 15 random M&Ms subjects to 10 cases. For
the same 50 M&Ms test subjects, our approach yielded
DSC of {0.823+0.111, 0.818+0.070, 0.889+0.072},

MEDICAL PHYSICS 2!

ASSD of {2.73+1.93, 1.72+0.71, 1.73+0.95} mm,
and HD of {11.21+7.01, 8.52+5.73, 6.12+4.16} mm
for {RV, Myo, LV}, superior to Unet_UB (DSC =
{0.823+0.138, 0.782+0.097, 0.884+0.068}, ASSD
{3.15+2.52, 2.23+1.16, 2.12+1.43} mm, and HD =
{11.02+7.12, 9.38+5.68, 6.64+4.80} mm for {RV, Myo,
LV}). Other factors, including differences in cardiac
pathologies, image acquisition center and protocols,
inter-subject variations may contribute to various
degrees of algorithm generalizability and registra-
tion and segmentation performance between the two
datasets, which warrants further investigation. Over-
all, these results indicate that the proposed approach
provides a way to reduce the burden of manual delin-
eation of cine images for algorithm training, facilitating
integration of deep learning segmentation models for
efficient clinical workflow and adoption of the proposed
approach in clinical scenarios where training images
and annotations are limited.

Although promising results were achieved, we
acknowledge several study limitations. In this work,
we investigated semi-supervised segmentation of the
widely used ED and ES frames in cine MRI. Extension
and application of the proposed approach to all frames
across an entire cardiac cycle is needed in the con-
text of providing additional imaging measurements to
improve clinical management of patients with cardiac
disease. In addition, the proposed approach involves
registering ED and ES frames that are structurally simi-
lar for the same subject to provide pseudo label for the
unlabeled frames. This may limit application of the pro-
posed approach to broader clinical situations, whereby
manual annotation requires numerous resources and
the vast majority of medical images used for training
are unannotated. Although a relatively small portion of
training subjects may be (partially) annotated, register-
ing these subjects to other unlabeled cases that are
structurally dissimilar can be challenging due to various
factors, including anatomical and functional variability,
differences in imaging protocols, image noise, con-
trast, resolution, pathology and disease status. These
challenges highlight the need for improving the regis-
tration and segmentation performance of the proposed
approach to accommodate broader clinical scenarios.
Furthermore, the ACDC and M&Ms dataset comprise
healthy volunteers and patients with limited spectrum
of cardiac pathologies recruited at one and two clinical
centers, respectively, and the segmentation algorithm
was developed and evaluated on 2D slices with poten-
tial overfitting to specific pathologies. Investigation of
larger 3D volumetric cardiac cine MRI datasets acquired
from subjects with diverse cardiac pathologies using
different MR systems and imaging protocols across
multiple healthcare centers will be prioritized in the
future. We observed sub-optimal degree of Pearson
correlation and Bland—Altman agreement for algorithm
versus manual RVEF measurements. This may be
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because RV is generally more difficult to segment due
to the relatively small size, complex shape and morphol-
ogy, and blurry boundaries with surrounding tissues.
Although the segmentation accuracies were generally
promising, small differences in RV volumes at either
ED or ES frames can lead to substantial variations in
RVEF calculation. Further optimization of algorithm
performance is required for translating the proposed
approach to clinical deployment. Moreover, we employed
perhaps the most widely used VoxelMorph and Unet as
the registration and segmentation module, respectively,
in the proposed algorithm framework. We note that the
focus of this study is to develop and investigate the
effects of the dual segmentation and the TAP modules,
and to integrate these components to generate an
effective joint segmentation and registration algorithm
pipeline, rather than to develop single segmentation
and registration networks. We think the proposed algo-
rithm framework applies to many recently developed
advanced segmentation and registration networks,
for example, TransMorph, RSegNet, and U-ReSNet.
These limitations represent the direction of our future
work.

6 | CONCLUSION

We developed an approach that integrates deformable
registration, fully and weakly supervised segmentation
with feedback on registration, and a temporal atten-
tion mechanism for semi-supervised cine cardiac MRI
segmentation. For two public cardiac MRI datasets,
our approach outperformed several state-of-the-art
methods by a large margin and closely approached
fully supervised learning when using relatively small
datasets and under annotations for training. These
observations suggest that our approach could sup-
port the integration of deep learning models in clinical
cardiac MR imaging workflow.
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