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Pulmonary dynamic ventilation dysfunction is a common fea-
ture of various lung diseases, including chronic obstructive pul-
monary disease (COPD) [1], cystic fibrosis [2], and asthma [3]. 
Regional assessment of ventilation dynamics offers substantial 
potential to enhance diagnostic accuracy and therapeutic monitor-
ing in these conditions. Although current clinical evaluations pri-
marily depend on global pulmonary function tests, emerging 
imaging modalities such as four-dimensional computed tomogra-
phy (4D-CT) [4] and phase-resolved functional lung (PREFUL) 
imaging [5] enable temporal observation of structural and ventila-
tion changes. However, these techniques are fundamentally lim-
ited in their ability to visualize time-of-flight (TOF) gas flow 
patterns within airways and alveolar spaces-critical parameters 
for the direct assessment of regional gas diffusion efficiency.

Hyperpolarized (HP) 129 Xe magnetic resonance imaging (MRI) 
has emerged as a powerful modality for non-invasive assessment 
of pulmonary structure and functional dynamics [6] and has 
received clinical approval in both China and the United States
[7]. Several studies employing HP gas MRI, combined with 
multiple-breath wash-in/wash-out techniques, have investigated 
lung dynamic ventilation function and ventilation heteroge neity. 
Additionally, HP gas MRI has been utilized to assess dynamic ven-
tilation function, including delayed ventilation [8], inflation rate 
[9], and gas flow within the major airways [10]. 
Continuous image acquisition throughout the respiratory cycle 
is essential for dynamic ventilation analysis. However, this require-
ment poses substantial technical challenges due to the inherent 
mismatch between the short duration of physiological breaths 
(particularly in preclinical models) and the temporal resolution 
limitations of conventional MRI acquisition. Although acceleration 
strategies such as sliding window reconstruction and interleaved 
spiral imaging can improve temporal sampling, these approaches 
inevitably compromise signal-to-noise ratio (SNR) and spatial res-
olution. Compressed sensing (CS) methodologies have advanced
human imaging temporal resolutions into the sub-second range
[11], but they remain insufficient for detecting subtle pathophysi-
ological changes, particularly in small animal models.

To address these limitations, we present a novel method for 
high spatiotemporal resolution imaging of pulmonary ventilation 
dynamics across multiple respiratory cycles by using 129Xe gas
MRI (Fig. 1). To overcome the challenge posed by short breath 
cycles in vivo, we employ a combination of multiple-breath venti-
lation and line-scan acquisition strategies [12]. This approach 
enables the reconstruction of high-temporal resolution images by 
synchronizing data from multiple breaths into a single respiratory 
cycle. Each frame of the dynamic images was captured across sep-
arated breath cycles, with only one k-space line acquired per frame
during a single breath (Fig. 1a). To eliminate the influence of resid-
ual HP 129 Xe gas MRI signals from the previous breath, sixteen sat-
uration RF pulses were applied at the onset of 129Xe inspiration in
each respiration cycle (Fig. 1b). Additionally, a 7° flip angle RF exci-
tation pulse was used for all the dynamic acquisitions to maintain 
a relatively high SNR (Fig. 1b). To shorten the scan time, a
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Fig. 1. Schematic of the ventilation, acquisition, and k-space lines filling strategies for dynamic ventilation imaging. (a) Ventilation strategy: to maintain normal physiological 
conditions and a stable detectable signal, oxygen, and xenon gas were alternatively ventilated into the lungs. The number below the blue curve indicates the ordinal number 
of 129 Xe breaths, and the number of 129 Xe breaths (m) corresponds to the number of phase encoding steps. (b) Acquisition and k-space filling strategies: to achieve high 
temporal resolution, k-space lines corresponding to the same phase encoding step of all the frame images were acquired in the same respiratory cycles, using a flip angle (FA) 
of 7° . Before MRI data acquisition in each respiratory cycle, sixteen saturation radio frequency (RF) pulses with a flip angle (FA) of 90° were applied (red arrows) to eliminate 
residual magnetization. For fully sampled k-space (FS), data collected during a single breathing cycle filled one line of each k-space. (c) k-space filling with compressed 
sensing (CS). To reduce acquisition time, a CS technique with an acceleration factor of 2 was employed, resulting in the acquisition of a total of 344 frame images. (d) Typical
coronal dynamic ventilation images from a healthy rat. S denotes the saturation RF pulse, E denotes the excitation RF pulse represents the k-space number for the jth frame 
image, and indicates the ith k space line in the jth frame image.

, kj 
ki j 
compressed sensing technique was employed to accelerate image 
acquisition (Fig. 1c). Both retrospective and prospective results 
are provided in the supplementary materials (Fig. S1 online). All 
animal protocols were approved by the institutional animal care 
and use committee of the Innovation Academy for Precision 
Measurement Science and Technology , Chinese Academy of
Sciences (APM22033A).
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Using the proposed method, we successfully acquired dynamic 
ventilation images in rats with a temporal resolution of 5.6 ms and 
a nominal spatial resolution of 0.5 mm × 0.5 mm (Fig. 1d). Gas flow 
through the main trachea and bronchi and subsequently into the 
peripheral parenchyma during inspiration was clearly visualized, 
followed by a decrease in the 129 Xe signal during expiration,
observed in the representative frames of the dynamic ventilation
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(Fig. 1d) (the full series of dynamic images is presented in Fig. S2 
online). To quantify gas flow within the lung, five representative 
regions of interest (ROI) were manually selected for quantitative
analysis (Fig. S3a online). 129 Xe signals were successfully captured 
in all the five selected ROIs, with 129 Xe signal intensities in the tra-
chea and bronchi being notably higher than those in the lung par-
enchyma. As expected, the 129 Xe signal dynamics closely followed 
the respiratory cycle, exhibiting a rapid increase during inspiration
and a gradual decrease during expiration (Fig. S3b online). Addi-
tionally, we observe that the 129 Xe signal intensity in dynamic 
images captured during expiration was markedly lower than that 
acquired during inspiration. This reduction is likely attributable 
to the decay of HP gas magnetization caused by repeated RF exci-
tations, combined with the absence of fresh HP gas supply during
the expiration.

After confirming that the proposed method could be used for 
pulmonary dynamic ventilation imaging in healthy rats, we further 
evaluated its feasibility for assessing ventilation dysfunction asso-
ciated with pulmonary diseases. Rats were treated with 
lipopolysaccharide (LPS), resulting in evident alveolar septal thick-
ening and lung tissue consolidation (Fig. S4 online), thereby con-
firming the successful establishment of the pulmonary
Fig. 2. Quantitative analysis of dynamic ventilation function based on signal-to-time cu
manually segmented into four regions of interests (ROIs): the main trachea (ROI-T), left l
curves were generated for the whole lung (WL) (b), ROI-T (c), ROI-RU (d), ROI-L (e), and
includes a zoomed-in inset (highlighted by a purple box) providing a detailed view of a po
time curve (h) were obtained from a control rat. The time of gas arrival (Tarrival) and the ti
in red. (i) Representative Tarrival and Tpeak maps, as well as gas flow rate for inspiration (Flo
of the averaged Flowin (j) and (k) values in the WL and four selected ROIs between the con
a two-tailed Student’s t-test or Mann-Whitney U test, with significance set at <0.05. Mea
All dynamic images were individually normalized to the maximum signal value of the en
ROI-T were multiplied by 0.2. *P < 0.05, **P < 0.01.
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pathological animal model. Dynamic ventilation imaging was then 
performed in the diseased rats using the proposed method, and 
their ventilation performance was compared to that of healthy 
controls based on quantitative analysis of the recorded images. 
To facilitate image interpretation, we segmented the whole lung
(WL) into four ROIs manually, as shown in Fig. 2a, i.e., the main tra-
chea (ROI-T), left lobe (ROI-L), right upper lobe (ROI-RU), and right 
lower lobe (ROI-RL). The average signal intensities over time were 
then plotted for each ROI. The results revealed significantly lower 
dynamic ventilation signals (P < 0.001) in all three ROIs and WL
in the LPS group compared to the healthy control group (Fig. 2b, 
d–f). Because the xenon gas was mechanically ventilated through 
a tube connected to the trachea at a constant flow rate (3.6 ml/ 
s), no significant difference (P  =  0.208) in 129 Xe signal intensity 
was observed in ROI-T between the groups. To minimize lung 
injury associated with mechanical ventilation, the pressure of the 
lung was maintained below 15 cm H2O in all the rats throughout
the experiments [13,14]. 

Additionally, total 129 Xe MR signal–time curves were calculated 
for each voxel using the registered dynamic images (Fig. 2g), from 
which gas volume–time curves were subsequently derived 
(Fig. 2h). Moreover, the maps of characteristic times related to
rves and typical characteristic time and gas flow rate maps. (a) Lung images were 
obe (ROI-L), right upper lobe (ROI-RU), and right lower lobe (ROI-RL). Signal-to-time 
 ROI-RL. (f) Comparison between LPS (n = 5) and control group (n = 5). Each figure 
rtion of the curves. A typical total 129 Xe signal–time curve (g) and 129 Xe gas volume– 
me at which the signal reaches its peak (Tpeak) is indicated, with fitted curves plotted 
win) and expiration (Flowout), are presented for both control and LPS rats. Comparison 
trol (n = 5) and LPS (n = 5) groups. Comparison between groups was performed using 
sures of central tendency are presented as the mean; error bars represent mean± sd.
tire respiratory cycle for each rat. Note: for display purposes, the Flowout values for
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dynamic ventilation function were generated, including the time of 
gas arrival (Tarrival) and the time to peak signal intensity (Tpeak), 
based on the total-signal-to-time curves for each rat [2]. Gas flow 
rate maps for inspiration (Flowin) and expiration (Flowout) were also 
created by applying linear fitting to the gas volume–time curves 
data on a voxel scale. The calculation methods are described in 
the supplementary materials online. Representative maps of char-
acteristics times and gas flow rates from the control and LPS
groups are shown in Fig. 2i. No significant differences were 
observed between the groups in the WL averaged parameters of 
Tarrival (Padj = 1.000) and Tpeak (Padj = 1.000), where Padj denotes 
the Bonferroni corrected P value (Padj =  P*5). However, compared 
to the control group, the LPS group exhibited greater heterogeneity 
in the Flowin and Flowout maps across the lung, and the measured 
global Flowout was significantly lower in the LPS group. Addition-
ally, significant differences were observed in the measured regio-
nal Flowin (ROI-RU, Padj = 0.045; ROI-RL, Padj = 0.010) and Flowout

(ROI-T, Padj = 0.002; ROI-RL, Padj = 0.045) between the groups
(Fig. 2j and 2k). The measured characteristic times related to 
dynamic ventilation function for all the rats are summarized in
Table S1 online, and the WL and regional Flowin and Flowout values 
are summarized in Table S2 online. The measured Flowout values 
are approximately 4–5 times lower than the Flowin values. This dis-
crepancy is likely due to the difference in the concentration of 
‘‘fresh HP 129 Xe” between inspiration and expiration. During inspi-
ration, pure HP xenon gas is inhaled, whereas, during expiration, 
the exhaled gas contains a mixture of depolarized xenon and oxy-
gen. Because the MRI signal is generated solely by HP 129 Xe, the 
measured Flowout values are significantly underestimated. To 
obtain more accurate Flowout values, it is essential to account for 
the proportion of HP 129 Xe in the exhaled gas. Without this correc-
tion, Flowin remains more sensitive to the dynamic changes in ven-
tilation function compared to Flow out, due to the higher SNR of
images acquired during inspiration. Furthermore, both Flowin and
Flowout demonstrated a correlation with histological measure-
ments of alveolar septal thickness, as shown in Fig. S6 (online). 

In conclusion, we developed an accelerated line-scan approach 
for pulmonary dynamic ventilation function imaging, achieving 
substantial improvements in both temporal and spatial resolution 
up to several milliseconds and submillimeter levels, respectively. 
Several key parameters derived from the quantitative analysis of 
the images are proposed and successfully applied for the regional 
dynamic ventilation abnormalities assessment in vivo. Although 
clinical translation presents challenges—particularly in achieving 
stable and reproducible gas delivery in human lungs—the prior val-
idation of multiple-breath 129Xe gas imaging in human studies
supports its feasibility for clinical implementation [15]. These find-
ings have the potential to provide new insights into the under-
standing and early diagnosis of lung diseases associated with
dynamic ventilation dysfunction.
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