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Pulmonary dynamic ventilation dysfunction is a common fea-
ture of various lung diseases, including chronic obstructive pul-
monary disease (COPD) [1], cystic fibrosis [2], and asthma [3].
Regional assessment of ventilation dynamics offers substantial
potential to enhance diagnostic accuracy and therapeutic monitor-
ing in these conditions. Although current clinical evaluations pri-
marily depend on global pulmonary function tests, emerging
imaging modalities such as four-dimensional computed tomogra-
phy (4D-CT) [4] and phase-resolved functional lung (PREFUL)
imaging [5] enable temporal observation of structural and ventila-
tion changes. However, these techniques are fundamentally lim-
ited in their ability to visualize time-of-flight (TOF) gas flow
patterns within airways and alveolar spaces-critical parameters
for the direct assessment of regional gas diffusion efficiency.

Hyperpolarized (HP) '?®Xe magnetic resonance imaging (MRI)
has emerged as a powerful modality for non-invasive assessment
of pulmonary structure and functional dynamics [6] and has
received clinical approval in both China and the United States
[7]. Several studies employing HP gas MRI, combined with
multiple-breath wash-in/wash-out techniques, have investigated
lung dynamic ventilation function and ventilation heterogeneity.
Additionally, HP gas MRI has been utilized to assess dynamic ven-
tilation function, including delayed ventilation [8], inflation rate
[9], and gas flow within the major airways [10].
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Continuous image acquisition throughout the respiratory cycle
is essential for dynamic ventilation analysis. However, this require-
ment poses substantial technical challenges due to the inherent
mismatch between the short duration of physiological breaths
(particularly in preclinical models) and the temporal resolution
limitations of conventional MRI acquisition. Although acceleration
strategies such as sliding window reconstruction and interleaved
spiral imaging can improve temporal sampling, these approaches
inevitably compromise signal-to-noise ratio (SNR) and spatial res-
olution. Compressed sensing (CS) methodologies have advanced
human imaging temporal resolutions into the sub-second range
[11], but they remain insufficient for detecting subtle pathophysi-
ological changes, particularly in small animal models.

To address these limitations, we present a novel method for
high spatiotemporal resolution imaging of pulmonary ventilation
dynamics across multiple respiratory cycles by using 2°Xe gas
MRI (Fig. 1). To overcome the challenge posed by short breath
cycles in vivo, we employ a combination of multiple-breath venti-
lation and line-scan acquisition strategies [12]. This approach
enables the reconstruction of high-temporal resolution images by
synchronizing data from multiple breaths into a single respiratory
cycle. Each frame of the dynamic images was captured across sep-
arated breath cycles, with only one k-space line acquired per frame
during a single breath (Fig. 1a). To eliminate the influence of resid-
ual HP '?°Xe gas MRI signals from the previous breath, sixteen sat-
uration RF pulses were applied at the onset of 1>°Xe inspiration in
each respiration cycle (Fig. 1b). Additionally, a 7° flip angle RF exci-
tation pulse was used for all the dynamic acquisitions to maintain
a relatively high SNR (Fig. 1b). To shorten the scan time, a
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Fig. 1. Schematic of the ventilation, acquisition, and k-space lines filling strategies for dynamic ventilation imaging. (a) Ventilation strategy: to maintain normal physiological
conditions and a stable detectable signal, oxygen, and xenon gas were alternatively ventilated into the lungs. The number below the blue curve indicates the ordinal number

of 12%Xe breaths, and the number of '>°Xe breaths (m

) corresponds to the number of phase encoding steps. (b) Acquisition and k-space filling strategies: to achieve high

temporal resolution, k-space lines corresponding to the same phase encoding step of all the frame images were acquired in the same respiratory cycles, using a flip angle (FA)
of 7°. Before MRI data acquisition in each respiratory cycle, sixteen saturation radio frequency (RF) pulses with a flip angle (FA) of 90° were applied (red arrows) to eliminate
residual magnetization. For fully sampled k-space (FS), data collected during a single breathing cycle filled one line of each k-space. (c) k-space filling with compressed
sensing (CS). To reduce acquisition time, a CS technique with an acceleration factor of 2 was employed, resulting in the acquisition of a total of 344 frame images. (d) Typical

coronal dynamic ventilation images from a healthy rat. S denotes the saturation RF pulse,
image, and k; indicates the it" k space line in the j* frame image.

compressed sensing technique was employed to accelerate image
acquisition (Fig. 1c). Both retrospective and prospective results
are provided in the supplementary materials (Fig. S1 online). All
animal protocols were approved by the institutional animal care
and use committee of the Innovation Academy for Precision
Measurement Science and Technology, Chinese Academy of
Sciences (APM22033A).
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E denotes the excitation RF pulse, k; represents the k-space number for the j frame

Using the proposed method, we successfully acquired dynamic
ventilation images in rats with a temporal resolution of 5.6 ms and
a nominal spatial resolution of 0.5 mm x 0.5 mm (Fig. 1d). Gas flow
through the main trachea and bronchi and subsequently into the
peripheral parenchyma during inspiration was clearly visualized,
followed by a decrease in the !'?°Xe signal during expiration,
observed in the representative frames of the dynamic ventilation
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(Fig. 1d) (the full series of dynamic images is presented in Fig. S2
online). To quantify gas flow within the lung, five representative
regions of interest (ROI) were manually selected for quantitative
analysis (Fig. S3a online). '2°Xe signals were successfully captured
in all the five selected ROIs, with 2°Xe signal intensities in the tra-
chea and bronchi being notably higher than those in the lung par-
enchyma. As expected, the '**Xe signal dynamics closely followed
the respiratory cycle, exhibiting a rapid increase during inspiration
and a gradual decrease during expiration (Fig. S3b online). Addi-
tionally, we observe that the ?9Xe signal intensity in dynamic
images captured during expiration was markedly lower than that
acquired during inspiration. This reduction is likely attributable
to the decay of HP gas magnetization caused by repeated RF exci-
tations, combined with the absence of fresh HP gas supply during
the expiration.

After confirming that the proposed method could be used for
pulmonary dynamic ventilation imaging in healthy rats, we further
evaluated its feasibility for assessing ventilation dysfunction asso-
ciated with pulmonary diseases. Rats were treated with
lipopolysaccharide (LPS), resulting in evident alveolar septal thick-
ening and lung tissue consolidation (Fig. S4 online), thereby con-
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pathological animal model. Dynamic ventilation imaging was then
performed in the diseased rats using the proposed method, and
their ventilation performance was compared to that of healthy
controls based on quantitative analysis of the recorded images.
To facilitate image interpretation, we segmented the whole lung
(WL) into four ROIs manually, as shown in Fig. 2a, i.e., the main tra-
chea (ROI-T), left lobe (ROI-L), right upper lobe (ROI-RU), and right
lower lobe (ROI-RL). The average signal intensities over time were
then plotted for each ROL The results revealed significantly lower
dynamic ventilation signals (P < 0.001) in all three ROIs and WL
in the LPS group compared to the healthy control group (Fig. 2b,
d-f). Because the xenon gas was mechanically ventilated through
a tube connected to the trachea at a constant flow rate (3.6 ml/
s), no significant difference (P = 0.208) in ?°Xe signal intensity
was observed in ROI-T between the groups. To minimize lung
injury associated with mechanical ventilation, the pressure of the
lung was maintained below 15 cm H,0 in all the rats throughout
the experiments [13,14].

Additionally, total '?°Xe MR signal-time curves were calculated
for each voxel using the registered dynamic images (Fig. 2g), from
which gas volume-time curves were subsequently derived

firming the successful establishment of the pulmonary (Fig. 2h). Moreover, the maps of characteristic times related to
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Fig. 2. Quantitative analysis of dynamic ventilation function based on signal-to-time curves and typical characteristic time and gas flow rate maps. (a) Lung images were
manually segmented into four regions of interests (ROIs): the main trachea (ROI-T), left lobe (ROI-L), right upper lobe (ROI-RU), and right lower lobe (ROI-RL). Signal-to-time
curves were generated for the whole lung (WL) (b), ROI-T (c), ROI-RU (d), ROI-L (e), and ROI-RL. (f) Comparison between LPS (n = 5) and control group (n = 5). Each figure
includes a zoomed-in inset (highlighted by a purple box) providing a detailed view of a portion of the curves. A typical total '>°Xe signal-time curve (g) and '?°Xe gas volume-
time curve (h) were obtained from a control rat. The time of gas arrival (Tgiva) and the time at which the signal reaches its peak (T,eqx) is indicated, with fitted curves plotted
inred. (i) Representative Tyiva and Tpeqx Maps, as well as gas flow rate for inspiration (Flow;,) and expiration (Flow,,,), are presented for both control and LPS rats. Comparison
of the averaged Flow;, (j) and (k) values in the WL and four selected ROIs between the control (n = 5) and LPS (n = 5) groups. Comparison between groups was performed using
a two-tailed Student’s t-test or Mann-Whitney U test, with significance set at <0.05. Measures of central tendency are presented as the mean; error bars represent mean * sd.
All dynamic images were individually normalized to the maximum signal value of the entire respiratory cycle for each rat. Note: for display purposes, the Flow,,, values for

ROI-T were multiplied by 0.2. *P < 0.05, **P < 0.01.
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dynamic ventilation function were generated, including the time of
gas arrival (Tgmiver) and the time to peak signal intensity (Tpeax),
based on the total-signal-to-time curves for each rat [2]. Gas flow
rate maps for inspiration (Flow;,) and expiration (Flow,,,) were also
created by applying linear fitting to the gas volume-time curves
data on a voxel scale. The calculation methods are described in
the supplementary materials online. Representative maps of char-
acteristics times and gas flow rates from the control and LPS
groups are shown in Fig. 2i. No significant differences were
observed between the groups in the WL averaged parameters of
Tarrivat (Pagj = 1.000) and Tpeqx (Pagj = 1.000), where P,q; denotes
the Bonferroni corrected P value (P, = P*5). However, compared
to the control group, the LPS group exhibited greater heterogeneity
in the Flow;, and Flow,,, maps across the lung, and the measured
global Flow,,; was significantly lower in the LPS group. Addition-
ally, significant differences were observed in the measured regio-
nal Flow;, (ROI-RU, P,g; = 0.045; ROI-RL, Pyqj = 0.010) and Flow,y
(ROI-T, Pggj = 0.002; ROI-RL, Pgq; = 0.045) between the groups
(Fig. 2j and 2k). The measured characteristic times related to
dynamic ventilation function for all the rats are summarized in
Table S1 online, and the WL and regional Flow;, and Flow,,, values
are summarized in Table S2 online. The measured Flow,,, values
are approximately 4-5 times lower than the Flow;, values. This dis-
crepancy is likely due to the difference in the concentration of
“fresh HP 2°Xe” between inspiration and expiration. During inspi-
ration, pure HP xenon gas is inhaled, whereas, during expiration,
the exhaled gas contains a mixture of depolarized xenon and oxy-
gen. Because the MRI signal is generated solely by HP ?°Xe, the
measured Flow,,; values are significantly underestimated. To
obtain more accurate Flow,,, values, it is essential to account for
the proportion of HP '?°Xe in the exhaled gas. Without this correc-
tion, Flow;, remains more sensitive to the dynamic changes in ven-
tilation function compared to Flow,,, due to the higher SNR of
images acquired during inspiration. Furthermore, both Flow;, and
Flow,,, demonstrated a correlation with histological measure-
ments of alveolar septal thickness, as shown in Fig. S6 (online).

In conclusion, we developed an accelerated line-scan approach
for pulmonary dynamic ventilation function imaging, achieving
substantial improvements in both temporal and spatial resolution
up to several milliseconds and submillimeter levels, respectively.
Several key parameters derived from the quantitative analysis of
the images are proposed and successfully applied for the regional
dynamic ventilation abnormalities assessment in vivo. Although
clinical translation presents challenges—particularly in achieving
stable and reproducible gas delivery in human lungs—the prior val-
idation of multiple-breath '*°Xe gas imaging in human studies
supports its feasibility for clinical implementation [15]. These find-
ings have the potential to provide new insights into the under-
standing and early diagnosis of lung diseases associated with
dynamic ventilation dysfunction.
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